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ABSTRACT 
In this report, we provide enhancements to the Human Unimodel for Nuclear 

Technology to Enhance Reliability (HUNTER) software for dynamic human 
reliability analysis. HUNTER serves to create a virtual operator that can be used 
in Monte Carlo modeling to determine human error probabilities and other 
measures of human performance. We document the coupling of HUNTER to an 
external plant model. The Rancor Microworld Simulator is a simplified model of 
a pressurized water reactor. The simplified model allows easy data collection 
through human-in-the-loop studies and easier customization of features to reflect 
advances in plant technologies. The coupling of HUNTER with Rancor allows 
faster model development and execution that was previously possible. It also 
aligns HUNTER to ongoing empirical data collection efforts on operator 
performance, affording insights into actual human performance during modeling 
and validation of HUNTER model runs. In addition to documenting the coupling 
of HUNTER and Rancor, this report introduces model runs for two new industry-
derived scenarios: loss of feedwater and startup. The results of HUNTER model 
runs for these scenarios demonstrate the capabilities of the coupling. HUNTER-
Rancor accurately models operator performance. Future work will aim at further 
calibrating HUNTER-Rancor with more nuanced treatment of performance 
shaping factors and with specific industry-oriented applications like the 
application of aiding procedure developers in anticipating error traps for novel 
operating procedures.  
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HUMAN UNIMODEL FOR NUCLEAR TECHNOLOGY TO 
ENHANCE RELIABILITY (HUNTER) DEMONSTRATION: 

PART 2, MODEL RUNS OF OPERATIONAL 
SCENARIOS 

 

 
Figure 1. The HUNTER project logo. 

 

1. INTRODUCTION 
1.1 HUNTER Background 

Dynamic human reliability analysis (HRA) provides a simulation of human performance that can be 
used to inform quantitative risk assessment. One dynamic HRA approach, the Human Unimodel for 
Nuclear Technology to Enhance Reliability (HUNTER; see Figure 1) framework, was initially conceived 
in 2016 (Boring et al., 2016) as the offshoot of dynamic risk modeling work to support severe accident 
scenarios like flooding. There were two driving factors behind the decision to bring together different risk 
modeling ideas into a single framework: 

1. The need to integrate human elements of risk with other simulation-based tools as part of a suite 
of probabilistic risk assessment (PRA) tools being developed under the Risk-Informed Safety 
Margin Characterization (RISMC; now Risk-Informed Systems Analysis or RISA) Pathway 
under the U.S. Department of Energy’s (DOE’s) Light Water Reactor Sustainability (LWRS) 
Program. 

2. The desire to create a simplified and dynamic version of the Standard Plant Analysis Risk-Human 
Reliability Analysis (SPAR-H; Gertman et al., 2005) method as a proof of concept for simplified 
dynamic HRA. 

HUNTER emerged as a loose framework that included separate software codes and solutions to 
address these goals: 

1. A dynamic version of SPAR-H that autocalculated performance shaping factors (PSFs; Boring et 
al., 2017a) to calculate human error probabilities (HEPs). 

2. A subtask taxonomy called Goals-Operators-Methods-Selection rules (GOMS)-HRA that 
included elemental human activities called task level primitives (Boring and Rasmussen, 2016), 
which were linked to procedure steps as procedure level primitives (Boring et al., 2017). In turn, 
error mechanisms for each primitive were identified and classified as task level errors (Boring et 
al., 2018). A byproduct of this work was identifying not only error rates for each task level 
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primitive but also time distributions to allow GOMS-HRA to estimate task durations (Ulrich et 
al., 2017a). 

3. A dynamic treatment of dependency, which considers the relationship between sequences of 
human errors (Boring, 2015; Park, Boring, & Kim, 2019). This research introduced concepts of 
PSF distributions and PSF lag and linger, meaning PSFs have delay and decay functions that 
must be considered as part of HRA. 

4. Integration of HUNTER codes into dynamic PRA tools such as Risk Analysis Virtual Code 
ENvironment (RAVEN; Rabiti et al. 2017). Initial implementations of HUNTER used RAVEN to 
couple HUNTER to thermohydraulic simulation codes (Boring et al., 2016). 

Demonstrations of HUNTER were successful and established the overall value of the approach. A 
RISA review of tools and frameworks (Choi, 2020) suggested that the HUNTER framework would 
benefit from further steps to increase its technology readiness level, including developing a single 
application framework for HUNTER to ensure its utility beyond a research tool. A concerted effort was 
undertaken to develop a version of HUNTER that could operate as a standalone software analysis tool 
(Boring et al., 2022). Conceptually, HUNTER is seen as a virtual operator or digital human twin that 
couples with a virtual nuclear power plant model (i.e., a simulator) or similar digital twin. A revised 
version of HUNTER (called HUNTER 2 to distinguish it from earlier efforts) was released in March 
2022. It included several key features: 

1. A unified software architecture consisting of three main modules as shown in Figure 2. The 
individual module consists of dynamic PSFs that influence the performance of the virtual 
operator (Park et al., 2022a). The task module consists of the tasks being performed and is 
captured in HUNTER as a procedure engine that walks through the steps of plant operating 
procedures (Ulrich et al., 2022). The environment module is a simulation of a plant, typically 
an external model that is coupled to HUNTER (Heo et al., 2022) via an application 
programming interface (API). The task module drives the virtual operator through a step-by-
step interaction with the plant model based on the logic of each procedure step applied to the 
plant state, whereby the individual module moderates the performance accuracy and timing of 
the virtual operator at each step. 

 

 

 
Figure 2. The conceptual model of HUNTER 2. 
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2. These modules operate under a common graphical user interface (GUI) with a single-click 
launch of the HUNTER software (Ahn et al., 2022). A sample screen from the HUNTER 
GUI is shown in Figure 3, featuring a procedure flow diagram for building and monitoring 
the task module (left) and fields for coupling HUNTER to the external environment module 
and for adjusting task module performance for each procedure step (right). 

 

 
Figure 3. Example GUI for HUNTER. 

 
3. The demonstration included a realistic version of a steam generator tube rupture (SGTR) 

scenario, with the HUNTER outputs compared to empirical data derived from reactor 
operators performing the same scenario in a qualified nuclear power plant simulator (Bye et 
al., 2011). 

1.2 Toward HUNTER 2.1 
The demonstration of HUNTER 2 represented a significant maturation of the HUNTER framework 

toward standalone software that could address industry needs for dynamic HRA and PRA (Lawrence et 
al., 2021). However, the release of HUNTER 2 cannot be considered the capstone of the research and 
development efforts for HUNTER. Notably, two shortcomings still need to be addressed: 

1. The environment module demonstrated in HUNTER 2 features a coupling to the RELAP5-
3D thermohydraulic software. There are limitations of this approach that will be discussed in 
Section 2 of this report. There is a desire to couple HUNTER with additional plant models. 

2. The SGTR scenario is well understood and documented in the HRA community (Bye et al., 
2011) but represents a limited treatment of human error. To demonstrate HUNTER’s utility 
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for broader industry application, it is necessary to build more sample use cases to refine and 
prove HUNTER capabilities. 

This report is Part 2 of a series of reports to address these two shortcomings. In Part 1 of the report 
(Park et al., 2022b), human performance findings from an operator-in-the-loop study involving ten 
common reactor scenarios are presented. The empirical data of actual operator performance inform the 
modeling of additional scenarios in HUNTER and allow benchmarking of the HUNTER generated 
simulation results against actual operator performance. This report, Part 2, captures the coupling of 
another simulation software code to HUNTER in the environment module to afford greater HRA 
modeling ease and flexibility.  

The evolution of HUNTER can be seen in Figure 4, which shows the key milestone reports to date. 
This report is not meant to be read in isolation. To fully understand HUNTER, the reports should be read 
in sequence. Further, to understand this report, the following sections are best read in the order presented.  

1. Section 1 (this chapter) provides a succinct review of HUNTER. 

2. Section 2 discusses concepts related to coupling HUNTER to external simulations that represent 
nuclear power plants. 

3. Section 3 introduces the Rancor Microworld Simulator, which is the plant simulator to which 
HUNTER has recently been coupled. This section also reviews some of the empirical studies 
using human operators in the loop that help build and validate HRA models in HUNTER. 

4. Section 4 discusses coupling HUNTER and the Rancor Microworld Simulator, including 
implementational details of necessary added features in HUNTER. Because the coupling of a new 
plant model involves development of new features beyond HUNTER 2 (Boring et al., 2022), the 
resulting software version of HUNTER presented in this report is called HUNTER 2.1. 

5. Section 5 reviews the implementation and performance of two new plant scenarios in HUNTER, 
namely loss of feedwater and startup. 

6. Section 6 concludes this report with a discussion of shortcomings and planned future 
development work in HUNTER. 
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HUNTER 1 
 

Initial framework and demonstration of HUNTER concepts 
 

 
(Boring et al., 2016) 

 
 

HUNTER 2  
 

Initial standalone software demonstration of HUNTER 
 

 
(Boring et al., 2022) 

 
 

HUNTER 2.1 
 

Data collection of human operators 
 

 
New scenarios and simulator coupling 

 
(Park et al., 2022b) 

 
(This report) 

 
 

Figure 4. Evolution of HUNTER. 
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2. SIMULATOR COUPLING  
As noted in the previous section, HUNTER versions 1 and 2 were coupled to RELAP5-3D. Both 

approaches used RAVEN, which served as an API between HUNTER and the thermohydraulic modeling 
code (Choi, 2021). This worked as intended, but it featured a challenging asynchronous mode of coupling 
HUNTER to the plant model. For the present purposes, we define asynchronous coupling as an 
interaction between the human and plant model, whereby each operates independently, and values are 
passed between the models only at the beginning or end of sequences. For example, in an SGTR scenario, 
the plant model might use inputs on how long a human response takes to initiate safety injection. The 
plant model would use that input (or a distribution of inputs) to shape the plant model runs. This is 
considered loose coupling, whereby the plant model runs in batch mode without runtime sharing of inputs 
and outputs with the human model.  

In contrast, synchronous coupling involves a continuous feedback loop, whereby the human and plant 
models exchange information at regular intervals during runtime. The human model does not just serve as 
an input for the plant model; rather, the human and plant models advance in a stepwise function—the 
human model impacts the plant model at any point in time, and the plant model provides inputs that 
determine the human model’s next course of action. This type of coupling is considered tight coupling. 
The two types of coupling are depicted in Figure 5. 

 

 
Figure 5. Asynchronous and synchronous human-plant model coupling. 

 

Asynchronous model coupling is most often found in the use of thermohydraulic codes like RELAP5-
3D, which are designed to run without interruption to determine the evolution of plant parameters from a 
particular set of starting conditions. Within RELAP5-3D, it is possible to schedule changes in the 
configuration, but conditions are determined a priori and not changed once a particular simulation run is 
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started. Synchronous model coupling is most commonly found in interactive simulators,1 which feature a 
system model linked to real-time inputs from a human user. For example, a training simulator at a nuclear 
power plant operates in such a manner that an input from the reactor operator at any point in time will 
change the evolution of the simulation run. The simulator provides an evolving response to dynamic 
contexts that reflect operator actions. The ability to change the simulation run mid-course is the hallmark 
of synchronous coupling. 

HUNTER, as virtual operator, most accurately reflects human-system interactions when it is coupled 
synchronously with a plant model. While it is possible in the context of procedure-based operations to 
anticipate most permutations of human-system interactions in an a prior fashion, the process nonetheless 
becomes complicated when linked to other modules like the individual module. If a model run is 
measured in time steps, a particular human action might, for example, be anticipated to run between 30 
seconds and 3 minutes after a particular plant state is achieved. The range of human response times could 
be put in the input deck of RELAP5-3D, but the actual responsiveness of the operator might be 
determined by their stress at that moment, higher stress slowing the time it takes to respond. The stress 
level is linked to the precursor event that triggered the need for the particular action. Thus, response time 
is a function of the immediate past event and may not be readily predicted in advance. Multivariate 
interactions between factors in the individual module, which are linked to the antecedents of the 
environment model, affect the response of the task model. 

The challenge to predict future (t +1) human actions (h) can be approximated as follows: 

ht+1 = h(ht ; st) (1) 

which means that future human actions are a function of current (t) actions given the current plant or 
system states (s). Likewise, future system states can be approximated as follows: 

st+1 = s(st ; ht) (2) 

which means that future system states are a function of the current system state given current human 
actions. There is a circular chronology if trying to predict the back and forth between the system and 
human models in advance of either happening. The human actions are dependent on the system state just 
as the system state is dependent on the human actions. Trying to compute one without the other is nearly 
impossible in a discrete event simulation.  

For this reason, we sought a tighter coupling with the external module or plant model. While a 
process to allow RELAP5-3D to operate synchronously with HUNTER was developed (Choi, 2021; Heo 
et al., 2022), the complexity of coupling HUNTER with RELAP5-3D undermines the aim to make 
HUNTER a standalone code. Additionally, because specific accident scenario models are needed for each 
RELAP5-3D instantiation, the scalability of HUNTER for running a wide range of scenarios was limited. 
For example, the SGTR scenario used in a previous HUNTER use case (Boring et al., 2022) required a 
specific RELAP5-3D model for SGTR. Modeling additional scenarios would require integrating 
HUNTER with additional RELAP5-3D models, including custom code to facilitate the synchronous 
coupling. 

Instead, we have sought to couple HUNTER with actual plant simulators. Plant training simulators 
operate in synchronous mode and feature an integrated suite of systems, allowing for a broad range of 
simulated plant failure conditions. Thus, coupling HUNTER to a plant simulator allows ready scalability 
across a variety of industry-relevant scenarios while only needing to create and use a single API across all 
scenarios. In many cases, this API has already been developed, owing to the INL development team’s 

 
1 A model that is executed is a simulation, while a simulator is a simulation designed to interact with 
human input. Simulation is typically asynchronous to other models or humans, whereas simulators are 
synchronous with regular exchanges to other models or humans. 
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involvement with control room modernization activities (e.g., Boring et al., 2019). The API used to 
interface advanced digital control room mockups (Lew, Boring, and Ulrich, 2014; Boring, Lew, and 
Ulrich, 2017) can often be reused for HUNTER, since the digital mockups share base code with 
HUNTER or at least have a similar software architecture that can be readily linked. Additionally, the tie-
in to plant training simulators answers the overriding goal of ensuring HUNTER is a tool that can be used 
by industry. By coupling HUNTER to actual plant training simulators used in industry, it becomes easy 
for that plant to use HUNTER for its own modeling activities. 

Plant training simulators, also known as full-scope simulators, typically include 100,000 or more 
internal plant parameters linked to approximately 10,000 input and outputs in the form of indicators and 
controls on the control room panels. Figure 6 illustrates a glasstop rendering of a control room in the form 
of the Human System Simulation Laboratory (HSSL; Boring, 2020) at Idaho National Laboratory (INL). 
A full-scope plant simulator is an ideal platform for coupling with HUNTER. However, it represents a 
complex environment that can prove difficult to benchmark to crew performance without direct access to 
operators from that specific plant. For this reason, we have focused our initial proof of concept for 
synchronous coupling on a simplified simulator, as presented in the next section. The simplified simulator 
also gives us access to operational data, as described in Part 1 of this report (Park et al., 2022b). The 
simplified simulator allows similar interactivity as the full-scope plant simulator, just with fewer 
parameters. This reduced set of parameters is sufficient to develop, test, and validate the synchronous 
coupling concept, thereby opening the door to future synchronous coupling with a full-scope simulator. 

 

   
Figure 6. The Human System Simulation Laboratory at INL in 2022. 
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3. RANCOR MICROWORLD SIMULATOR 
3.1 Background 

The Rancor Microworld Simulator, henceforth referred to simply as Rancor, was developed to 
address challenges facing human factors and HRA researchers investigating human performance in 
nuclear process control settings (Ulrich, 2017). Rancor is a simplified nuclear power plant simulator. 
Over the years we have conducted several studies with naïve and expert operators. Here we tightly couple 
Rancor with HUNTER. This section describes Rancor and discusses why it is well suited for this effort. 

3.2 Rancor Features and Capabilities 
Nuclear process control simulators have existed for decades, starting when nuclear utilities developed 

and deployed mimics of their nuclear power plant main control rooms to support operator licensing and 
training (Boring, 2011). The requirements for these simulators followed high-profile nuclear incidents, 
with a goal to ensure reactor operators could safely respond to upset conditions at their plants. Rancor was 
originally developed to serve as a simulator platform to evaluate situation awareness and attention metrics 
while participants performed normal and emergency plant operations. The original version of Rancor was 
developed and evaluated in a series of studies in 2017 and has since undergone several revisions that have 
enhanced its capability to capture human performance data and increase its fidelity as a process control 
simulator. 

 

 
Figure 7. Rancor display as presented to participants in its default configuration. 
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Since its original development, Rancor has evolved to support specific research questions 
encountered through collaborative efforts between the INL development team and the fledgling user base. 
The original version of Rancor was developed to support data collection, and therefore it has a human-
machine interface that allows participants to view the system state and make control inputs to adjust the 
process (see Figure 7). Rancor contains an automatic and manual rod controller for the reactor core, 
pumps and valves for the primary and secondary systems, setpoint controllers, digital and analog 
indicators, and alarms. The design and aesthetics are representative of actual indicators and controls found 
within existing analog nuclear power plant control rooms. Much like full-scope counterparts, Rancor has 
an executive window that allows the researcher to setup the simulator; load different plant initial 
conditions; and start, stop, and “snap” (i.e., save) a simulator state. The speed of the simulator can be 
modified. By default, the simulator speed is tailored to support short trials but also ensure participants 
have enough time to identify and respond to the plant dynamics. 

 

3.3 Nuclear Process Control Simulators 
Prior to its development and use, INL human performance experiments relied almost exclusively on 

training simulators residing at each nuclear power plant. These training simulators are high fidelity since 
they replicate the actual process control environment of the main control room. Following legislation 
issued in response to high-profile nuclear accidents such as Three Mile Island, each plant was required to 
build a simulator facility and perform ongoing operator training to combat potential human error traps. 

However, training simulators have several disadvantages that significantly limit human performance 
process control research. First, these full-scope simulators can be difficult for researchers to use. They 
were purpose-built to support operator licensing via training and recertification, and they require highly 
skilled trainers and simulator staff to operate. In contrast, Rancor is a simplified simulator that represents 
the same systems and process fundamentals of a real plant, but is accessible to naïve users and researchers 
that do not have extensive nuclear engineering backgrounds. The training simulator is fully scheduled to 
support the 8-12 operating crews at a given site, and therefore the schedule affords little time for 
researchers to use it for purposes other than training. Rancor is flexible because it can be run on a 
commercial-off-the-shelf (COTS) laptop or desktop computer. Training simulators also contain 
proprietary and sensitive nuclear operations information that prevents researchers from sharing raw 
results for scenarios in terms of plant parameters and their relationship to human performance. Rancor 
does not contain proprietary information that would limit its usage, and a growing corpus of Rancor 
human-in-the-loop study data is available for HRA research. Additionally, the training simulators are 
qualified for the plant they support, meaning any system modifications potentially result in a deviation 
from the required close alignment between simulator and plant. Lastly, the training simulators are part of 
each plant’s license, making utilities reticent to allow researchers to use their simulator as an experimental 
platform that may elicit negative operator performance. Rancor is a dedicated research tool and does not 
need to navigate regulatory and legal hurdles involved with using full-scope plant simulators. 

Given the limited access and sensitivities to nuclear process control simulators, much of the research 
examining operator performance issues was completed as secondary activities for some other human 
factors evaluation performed in collaboration with a nuclear utility (Medema, Mohon, and Boring, 2021). 
For example, the research team that developed Rancor has participated in over a dozen full-scope 
simulator studies using training simulators. To bypass the issues with the physical training simulator at 
the plant, the HSSL was developed to provide an alternative facility that could host a digitally recreated 
glasstop panel representation of a given plants control room (Boring, 2020). Rancor is a complementary 
tool to the HSSL. Where the HSSL aims to provide a tool for high-fidelity full-scope scenario 
simulations, Rancor is a tool for naïve users where fidelity is less important. 

Within roughly this same time frame, simulator vendors began to package generic versions of full-
scope training simulators. These simulators were based on actual plants, but the models were obscured to 
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remove proprietary and some sensitive nuclear modeling aspects to support the research community. This 
was a revolutionary step towards opening the door to researchers. However, the complexity of the 
simulators still poses a significant barrier to human factors and human reliability researchers. 
Furthermore, the cost of these simulators and the requisite facilities to display them at full-scale for an 
experiment is beyond the means of many university laboratories, and therefore only a handful of 
universities have been able to procure the models and implement a full-scope simulator facility. 

3.4 Simulator Features Framework 
To better understand the requirements of a simulator for research a literature review and survey study 

was conducted. The features present in existing training simulators were developed with the singular 
purpose to support educational and instructional use for initial training and license maintenance for 
operators. As noted, these features unfortunately do not necessarily align with capabilities that enable 
effective research. INL staff evaluated existing simulators in terms of capabilities and how these 
capabilities support nuclear process control research. A literature review was performed to identify 
simulators actively being used by the research community to evaluate human performance topics in 
nuclear process control. The literature review identified 14 studies using full-scope simulators with 
descriptions of the experimental methods, hypotheses, and simulator use to identify capabilities. For each 
of the identified studies, capabilities provided by the simulator were inferred by examining the collection 
methods and metrics for assessing human performance and plant status. For measures taken outside of the 
simulator this provided insight as to the extensibility of the simulator to support external data collection. 
Descriptions of how data from a simulator was integrated with other data served as another method to 
identify compatibility between human performance evaluation methods and simulator features. The 
metrics and data collected from the simulator during each experimental scenario could then be used as a 
proxy for the capabilities the simulator supports.  

From this literature review a framework of the various capabilities was constructed. The framework 
was then refined through a yet-to-be published survey study eliciting researcher needs and evaluations of 
their current simulators.  The resulting framework identified eight key simulator features or capabilities 
pertinent to researchers as illustrated in Table 1 below. As can be seen, there are capabilities important to 
researchers that are not readily available in existing simulators used to conduct nuclear process control 
human performance research. The following sections briefly describe each of the simulator capability 
dimensions including sub-elements that collectively represent each of the eight dimensions. 

 

Table 1. Simulator features organized by their level of support in existing full-scope simulators 

Standard Common Generally Unsupported 

Fidelity Interfacing Advanced Reactor Concepts 

Scenario Configuration Remote Access Cybersecurity 

Data monitoring and Logging  Human Performance Evaluation 
Integration 

 

  

3.4.1 Standard Supported Features  
Fidelity, scenario configuration, and data monitoring and logging are features that were available in 

all simulators identified in the literature review. These features represent the basic functionality for a 
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simulator. In fact, the fidelity dimension of the simulator feature framework is inherent to all simulators, 
as their fundamental purpose is to recreate the real-world process with a reasonable degree of accuracy. 
Though these three features are all present in all evaluated simulators, each feature is uniquely 
represented within any given simulator, and the differences in the representation can impact their 
suitability for supporting research.  

3.4.1.1 Fidelity 
Fidelity refers to the overall accuracy of the physics models and control systems as they reflect the 

actual plant. Scenario configurability refers to the ability to generate plant initial starting conditions and 
insert malfunctions on components. Fidelity can be further divided into the following four subdimensions: 

1. Thermohydraulic and neutronic steady state 

2. Thermohydraulic and neutronic transients 

3. Control System transients (timing precision) 

4. Control System transients (process value precision). 

3.4.1.2 Simulator Configuration 
Full-scope simulators, such as GSE Solutions’ Generic Pressurized Water Reactor (GPWR), typically 

include initial plant states known as initial conditions to support a suite of basic scenarios. Trainers can 
then insert malfunctions to cause system casualties, such as a failed high temperature sensor, that may 
cause a spurious controller to adversely impact the system. Most malfunctions include parameters to 
control the severity and dynamics of the malfunction. New initial conditions can be created by 
maneuvering the plant to a desired state and “snapping” the state of the plant to support a broader range of 
scenarios. Collectively these features allow for a broad range of scenarios to be simulated. However, 
sometimes it is not possible to create a scenario using a particular component of the system, since that 
component is either not represented sufficiently or does not have a malfunction capability associated with 
it. As a result, some simulators that model components as models of subcomponents can provide richer 
scenario configurations. The subdimensions include: 

1. Provided suite of preconfigured initial conditions (common) 

2. Provided suite of preconfigured malfunctions (common) 

3. Custom initial condition creation (common, i.e., snapshots or snaps) 

4. Paramertization of malfunctions (common) 

5. Custom malfunction creation (generally unsupported, requires amending plant model code). 

3.4.1.3 Data Monitoring and Logging 
The ability to monitor plant process parameters is important to understand the context for any 

behavioral data collected from operators. Monitoring allows researchers to understand the interactions 
between the plant states, as viewed through the human-system interface, and operator performance. Data 
logging and monitoring vary in terms of how easy it is to setup what elements are tracked during a 
scenario, what types of elements can be tracked, and when data is viewable to a researcher as captured in 
the following subdimensions: 

1. Real-time parameter logging (i.e., live monitoring of parameters) 

2. Parameter logging (i.e., time-stamped log runoff parameters) 

3. Real-time operator action logging (i.e., live monitoring of operator user inputs) 

4. Operator action logging (i.e., time-stamped log of operator inputs). 
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3.4.2 Commonly Supported Features 
This category of features is not present in all simulators, but some do support aspects of these 

features. Commonly supported features include interfacing and remote access. 

3.4.2.1 Interfacing 
Research with simulators typically entails some type of modification to the existing simulator system 

in terms of changing the underlying model to test new system designs. Within human factors and human 
reliability research domains the human-machine interfaces are often modified to evaluate new methods 
for presenting information. Simulator integration with additional simulations or physical equipment may 
also be required to evaluate new designs. As a result, it is important for researchers that the simulator can 
interact with external software or hardware.. Many simulators provide one or more APIs. The 
functionality of these APIs are typically fairly simplistic, with the ability to connect, disconnect, retrieve 
parameters, set parameters, and run simulator commands. It is important that the APIs are documented so 
that researchers can use them without extensive trial and error. Providing researchers with a means of 
identifying database parameters and the schemas of parameters is crucial.  

3.4.2.2 Remote Access 
Full-scope simulators typically assume the operator’s physical presence and do not support remote 

access to the simulator. They do offer portable versions intended to run on laptops that allow operators to 
take a copy of the simulator across the job site, but there is not active connection to the models running on 
the server at the full-scope simulator. Furthermore, there are ways to allow simulator support staff to view 
the simulator remotely for technical support purposes. Live remote access is currently unsupported in 
most simulator configurations outside of custom implementations. For example, the INL implemented a 
live data exchange with an intelligent prognostic support system run from Argonne National Laboratory 
as part of a proof-of-concept Computerized Operator Support System (COSS) demonstration (Lew, 
Ulrich, and Boring, 2017). The live data exchange allows remote models to interact with the simulator to 
support advanced concept research such as how a COSS could support operators diagnosing faults. 
Additionally, other types of models and potentially operators acting on those models could also be 
included towards integrated testing, which has applications such as flexible plant operations and 
generation with an emphasis on thermal energy dispatch or steam extraction for hydrogen production as a 
secondary plant revenue stream. Lastly, from a research perspective, the ability to integrate remote 
participants has promise to expand the potential for data collection opportunities. In an emerging control 
room remote concept of operations, the senior reactor operator (SRO) is largely in charge of the 
operational oversight and with limited displays could possibly perform their duty remotely by directing an 
operator in the physical control room. This would eliminate the need for SRO participants to travel to the 
facility. Little research has been conducted using these configurations—only one to the authors’ 
knowledge during the COVID shutdown period—but remote access has potential to reduce the cost of 
simulator studies while exploring more distributed system interactions. 

3.4.3 Generally Unsupported Features 
This last category of features represents identified shortcomings in existing simulators based on 

research trends toward supporting the burgeoning advanced reactor development activities. Advanced 
reactors include modular, passive safety, and autonomous designs that have no existing simulators at 
present. The models themselves for these advanced reactors are needed in some form, not necessarily full 
fidelity, to support a dynamic simulator that can serve research needs for future concept of operations 
development including fleet level remote monitoring and operation topics. Interestingly and anecdotally, 
some advanced reactor vendors are still pursuing their simulator development from purely a regulatory 
basis with simulator features restricted to basic training requirements that largely fall under the base, 
commonly supported category. 
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3.4.3.1 Advanced Reactor Concepts 
At the time of writing this report, the models for these systems are not readily available outside of the 

vendors or specific researchers collaborating with those vendors. Future simulators will certainly include 
the ability to model advanced reactor concepts that are listed below: 

1. Passive safety concepts 

2. Versatility of thermal energy concepts 

3. Digital instrumentation and control concepts. 

3.4.3.2 Cybersecurity Support 
Existing simulator models do not typically model network communication between components, 

controllers, sensors, and distributed control systems. Components are modeled to receive inputs and 
outputs, but the logic and communication pathways between those components are not represented at the 
network traffic level, and it is therefore challenging to incorporate cybersecurity scenarios within most 
existing simulator frameworks. The end effects, i.e., a casualty resulting in the loss of a component or the 
invalid signal sent from one component to another, can be modeled, but to evaluate the more nuanced 
aspects of the control systems for future advanced reactors, the network layer of the control system will 
be increasingly important to model. Common requirements for cybersecurity research include: 

1. Spoofed process value (i.e., adjusted indication and controls) 

2. Degraded process value (i.e., masked indication and controls) 

3. Simulated network traffic (i.e., modified communication of indication and controls) 

4. Incorporation of hardware in the loop (controllers). 

3.4.3.3 Integrated Human Performance Measurement 
Despite the initial training impetus for existing simulators, integrated human performance 

measurement is typically restricted to logging actions of operators taken on the controls. In some cases, 
even operator actions are not specifically coded in the database, and researchers must comb through the 
database to determine controller states and identify if the change in process parameter was due to operator 
input or an automatic control actuation. Simulator training is largely instructionally based with trainers 
shadowing operators in the control room to evaluate their performance with paper-based criteria-driven 
evaluation forms. Video recording is included in most if not all training facilities, since it allows 
instructors to unobtrusively view and review operator actions when evaluating an operator during a 
scenario. The video recording is not typically linked to the simulator logs themselves. Due to the criteria-
driven approach, instructors do not typically evaluate performance from a continuous plant process 
parameter scale perspective. For example, operators are evaluated in terms of their ability to achieve the 
objective within a procedure, but not necessarily on how well they restricted flow in a particular line 
during that procedure if they did not exceed a predefined value—the evaluation is a binary decision of 
satisfactory or deficient. Researchers optimizing control strategies are more interested in correlating 
operator performance metrics with specific and continuous plant process parameters to differentiate subtle 
performance differences. Operators rarely fail at tasks, and the subtle plant process parameter differences 
contain much of the human performance variability that can be used to optimize and inform future 
concepts of operations. Currently, the bulk of the human performance and plant process parameter 
integration is done with expensive commercial aggregation software or in-house custom built aggregation 
techniques and software. These subdimensions capture specific human performance measurements that 
are useful for researchers: 

1. Plant state event coding (i.e., parameter combinations for event coding) 

2. Operator action coding (i.e., operator action sequence patterns) 
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3. Operator action coding with process parameters (i.e., operator action logging with time-
synchronized parameter values) 

4. Mouse or cursor position logging 

5. Mouse click or cursor selection logging. 

The simulator feature framework serves as a tool to evaluate the nuanced capabilities of a simulator 
that can be informative for a researcher aiming to procure a simulator or determine what types of 
hypotheses could be addressed based on a given simulator. However, the greater value of this framework 
is that it highlights the needs of future simulators to bolster the necessary research needed to advance 
nuclear concept of operations to support new plant builds and large-scale modifications to allow existing 
plants to continue to operate. The next section translates key aspects of the simulator feature framework 
into research simulator requirements.  

3.5 Research Simulator Requirements 
The training simulator research challenges described in the previous sections undergirded the 

rationale for the development of Rancor. Rancor was conceived out of necessity, and that necessity 
predated the formalization of our simulator capabilities framework. However, a post-hoc analysis 
suggests that we were innately aware of many of these challenges and developed much of Rancor’s 
design to address these shortcomings.  The capabilities framework was merely presented in this report in 
this order since it provides context for the design choices made for Rancor. In fact, many of the use cases 
that Rancor revealed served as an input to what nuclear process control simulators could provide. It was 
created as a nuclear process control simulator with three critical requirements outlined in the following 
subsections. 

3.5.1 Researcher Accessibility 
The simulator platform must be accessible to non-nuclear engineer researchers. Full-scope simulators 

require immense knowledge of nuclear engineering and operations to build scenarios that can address 
human performance in a meaningful way. As such, non-nuclear researchers, such as human factors or 
cyber, must obtain plant subject matter experts (SMEs) to construct scenarios, which may be secondary to 
the human performance hypotheses. Often the challenging aspects of constructing these scenarios 
subjugates the original intent of the experiment or makes it challenging to create a suitable experimental 
design that can address the primary human performance-based hypothesis. Rancor simulator model and 
operations must be sufficiently simple to allow researchers outside of nuclear engineering to construct 
scenarios that address the human performance aspects of nuclear process control. The fidelity of the 
physical process represented by the simulator is deprioritized in this approach, though it emulates basic 
physical aspects sufficiently to mimic actual plant dynamics. Furthermore, the nature of tasks performed 
by the operators remains functionally unchanged. This creates the opportunity to advance collective 
understanding of human performance issues in complex environments that can then be directly applied 
and further evaluated in a high-fidelity setting as appropriate. Expanding the research opportunity greatly 
increases the potential to advance the science of human error towards the betterment of human factors 
processes that are used to ensure safe nuclear concepts of operations. 

This general use case allows researchers to construct scenarios to place cognitive demands or 
challenge participants based on predetermined hypotheses. Researchers administer post trial 
questionnaires to evaluate psychological constructs such as workload, attentional demands, and situation 
awareness, identically to how full-scope simulator studies are performed. Debriefs after each trial simply 
ask the participants to report issues they encountered are surprisingly quite powerful as an analysis tool 
and also employed extensively in full-scope simulator studies. However, quite often researchers may need 
to modify the simulator to support research aims. For example, online measures of situation awareness, 
such as the Situation Awareness Global Assessment Technique (Endsley, 1988), require the simulation to 
pause, obscure the displays, and then ask targeted situation awareness questions based on predefined 
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coded events, such as the reactor reaching 100% power. Rancor has a freeze-probe module that supports 
this type of situation awareness assessment, but this is just one approach. The simplicity of the Rancor 
architecture and codebase makes it much easier to modify the simulator itself to add data collection 
capabilities. Furthermore, modifying the human-machine interface or adding new or different 
functionality fall within the spectrum of use cases. Modifying Rancor is straightforward compared to a 
full-scope simulator and, indeed, the development team has made numerous alterations to Rancor to 
support collaborators as described in a subsequent section on studies using Rancor. The simplified 
simulator architecture allows the entire simulation to be run on a single computer, which eliminates the 
networking required for full-scope simulators and allows researchers to install the simulator much more 
easily. The layout of Rancor can be modified to adjust how the displays are presented to participants, such 
as across multiple displays or in the default condensed single display format. 

3.5.2 Naïve Participants 
The simulator model and interface must be sufficiently simple such that it affords data collection with 

naïve participants. Naïve participants are non-licensed operators with limited process control experience 
(Boring, Ulrich, and Lew, 2018). University undergraduate students are the intended target population 
since they are numerous, inexpensive, and readily recruitable through university experimental systems 
already in place across U.S. universities. The ability to use naïve participants carries the greatest potential 
to bolster nuclear human factors and human reliability research, since it extends the research capability 
outside of full-scope simulators using licensed operating crews, thereby opening up a much larger pool of 
research participants. The simplicity of the simulator model and interface is the most beneficial aspect of 
the platform, since it extends data collection capabilities to those with little training to act as operators, 
monitoring and controlling representative systems of actual nuclear power plants. 

3.5.3 Rapid Scenario Administration 
Full-scope simulators represent plant dynamics and timing as accurately as possible to provide 

accurate operator training. There are short scenarios, but typical full-scope scenarios range from 30 
minutes to several hours. Much of this time is simply the operators waiting for the plant response until 
they are then required to take another action. Trainers and researchers using full-scope simulators bypass 
this dead time by pausing the scenario and leapfrogging forward in time to the next point in the scenario 
with relevant human actions. Rancor operates at an accelerated speed, such that the same scenarios 
performed on a full-scope simulator, can be completed within 25 minutes and more commonly within 10 
minutes. The speed of simulator is tailored to provide participants with enough time to respond, whereby 
the relative timing of different components was held equivalent to the full-scope counterpart and validated 
by operators to ensure the simulator emulated, albeit an accelerated pace, the nuclear control process they 
were familiar with. Take a steam generator tube rupture scenario as a comparative example since it is 
perhaps the most trained on and studied scenario. In a full-scope simulator scenario, the crew can identify 
and resolve the faulted steam generator in approximately 15-40 minutes, while a single participant can 
identify and resolve the faulted steam generator in 5-15 minutes in Rancor. As a result, participants can 
perform many more scenarios and in turn researchers can collect much larger volumes of data within the 
same time frame. 

3.5.4  Generalizability 
Simplifying the models representing the plant systems inherently requires diverging from 

representing the full fidelity of the process control environment. However, strategic simplifications can 
reduce the complexity without unduly altering the fundamental operating principles or task procedures. 
The simulator models and interface must functionally reflect the process control tasks as operators 
perform them in a full-scope simulator. The basic plant systems must all be represented, but in reduced 
form. For example, a full-scope simulator may have four channels representing redundant sensors for a 
given component parameter. Rancor may only use one channel to represent the parameter. If there is no 
functional reason, from an operational perspective, to include these redundant details, they can be 
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removed from the model. Rancor also achieves complexity by eliminating many of the unnecessary 
support systems that provide plants with defense in depth or boost plant efficiency. Lastly, Rancor 
reduces much of the complexity by relying on simplified physics models that would not be sufficiently 
accurate for it to serve as an engineering reference model, but the dynamics of the physics are close 
enough to mimic the operational experience in terms of the cognitive demands required to work through a 
component casualty or bring a system from a cold shutdown state to online. 

3.6 Previous Rancor Studies and Use Cases 
3.6.1 Initial Testing 

The focus for the first series of experiments using Rancor was on the validation and viability of the 
platform to serve as a research tool (Ulrich et al., 2017b). First, as psychology students represent one of 
the largest available participant pools, it was deemed necessary for the platform to be relatively easy to 
learn without a nuclear or engineering background. Second, it was evaluated in terms of its ability to 
generate variability in nuclear process control performance and cognitive measures. Third, the platform 
was evaluated in terms of performance and cognitive measure variability, as they differed between naïve 
students and experts with process control experience. Lastly, through training and experience using 
Rancor, the learning time course for students to demonstrate performance resembling experts was 
evaluated. For any results to be generalizable to nuclear process control domain, the simulator should 
generate variable effects between and within experts and naïve students. It is challenging but nonetheless 
necessary to ensure the simulator is sufficiently complex to capture variability among experts but also 
sufficiently simple that it can simultaneously generate variability among naïve participants. Of course, it 
is also important to establish the extent to which naïve participant results generalize to represent the 
results of more experienced operators. 

During this initial set of experiments, participants received an hour of training including background 
on the systems, indicators, and controls for Rancor. Participants completed an experimenter-guided 
practice session prior to four experimental trials. Each trial required the participant to manipulate the 
system from a shutdown state, i.e., reactor core with control rods fully inserted, to online power 
producing mode of operation, i.e., full reactivity with steam generators producing steam for the turbine 
with the generator synced to the grid. This represents a compressed set of normal operations. 

Faults are often used to evaluate operator diagnostic and action responses to a degraded component. 
Perturbations comprised of a spurious reactor or turbine trip were included in each trial, and these forced 
participants to diagnose and then execute a series of control actions specific to the trip type to restore 
normal operations. These scenarios are perturbations and not true faults, since no components, sensors, or 
controls were compromised and all functionality was available. An actual fault entails a component 
casualty that forces operators to address the issue with varying levels of reduced system functionality. 
Future versions of Rancor addressed this shortcoming and will be described in subsequent sections. 

Student performance and learning effects were compared to a sample of steam plant and nuclear 
power plant operators. There was evidence for an initial effect of expertise on primary task performance, 
but the relationship was more complicated due to interactions for the cognitive factors of situation 
awareness, workload, and attention. This initial set of experiments established basic viability for Rancor 
to support nuclear process control research. 

3.6.2 Thermal Dispatch System Design and Evaluation 
The next research activity Rancor support focused on using student participants to evaluate usability 

issues for a prototype thermal dispatch system human-machine interface (see Figure 8) intended for 
integration with existing U.S. commercial light water reactors. This research demonstrates the use of 
Rancor in tandem with a full-scope simulator. The thermal dispatch system extracts steam from the main 
steam line before the turbine and diverts it to a nearby chemical process, such as hydrogen production 
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plant. The research aimed to develop an prototype display to control the thermal dispatch system and 
demonstrate this with a full-scope simulator running GSE Solutions’ GPWR (Ulrich et al., 2021). The 
prototype display was developed with input from licensed operators during a quasi-dynamic evaluation. 
After this evaluation, Rancor was modified with a model of the thermal dispatch system and the prototype 
interface, which in itself is relatively simple for a nuclear process control system. Students performed the 
same test scenarios presented to the operators in the quasi-dynamic evaluation, and their feedback was 
collected. Though students lack the nuclear expertise to comment on operational impacts of the thermal 
dispatch functionality, their perceptual capabilities are similar to licensed operators, and therefore human 
factors issues were expected to be reported. Despite differences in expertise, the students and operators 
reported similar types of usability issues. Therefore, the students augmented the small sample of operators 
and afforded a more comprehensive evaluation with greater confidence in successfully detecting all 
pertinent human factors issues. The university collaborators then refined the display design (see Figure 9) 
based on the outcomes of the student evaluation. This refined prototype was then tested again with 
licensed operators across fifteen different trials including normal and fault scenarios using the full scope 
simulator. 

 

 
Figure 8. Rancor augmented with the thermal dispatch prototype evaluated by students to resolve human 

factors issues prior to its operational evaluation with licensed operators in a full-scope simulator. 

 

 
Figure 9.  The initial thermal dispatch prototype display depicted in (a) contrasted with the revised display 

(b) based on student feedback and performance data. 

a b
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The simplified plant model highlights both the advantage and disadvantage for Rancor to support 

control room operations research. Using Rancor appropriately is critical to ensure that the results translate 
back to the nuclear process control domain. Within the context of this thermal dispatch system 
development, it was necessary to first have a viable but still immature design and concept of operations 
before modifying the Rancor models and testing the general usability of the display and operations within 
the simplified environment with naïve participants. Experts must provide input and verify the design 
before it is translated to the reduced order model and tested with students; otherwise, there is no basis for 
the validity of the testing, and it yields little benefit. Subsequently, the usability issues identified by the 
students must then be validated, which is already ensured in control room development activities through 
NUREG-0711, Human Factors Engineering Program Review Model (O’Hara et al., 2012).  

Rancor is best suited to serve as a formative phase simulator platform performed as an intermediate 
evaluation. The primary benefit for employing Rancor to address usability issues is the cost savings 
avoided by not using the full-scope simulator to vet the design for general usability issues. The full-scope 
simulator can then be used for high-fidelity scenario testing in which the plant responses and operator 
feedback are of more concern. The scenarios can avoid becoming bogged down in usability issues and the 
focus can remain on evaluating the human-machine interface’s ability to support the primary task for 
controlling the thermal dispatch system as was the case for the second operator-in-the-loop study of the 
thermal dispatch system development (Ulrich et al., 2021). 

 

 
Figure 10. Different Rancor styles used to evaluate user preference and performance data for an advanced 

reactor vendor control room concept development study. 

 

3.6.3 Advanced Reactor Control Room Development 
Numerous advanced reactor vendors are faced with developing a control room concept that affords 

efficient operations through high levels of automation. Unlike existing commercial plants, fully developed 
thermohydraulic models are typically not available to support designing and testing the control room 
concept. Deferring the control room design and evaluation until the reactor design is finalized is unwise, 
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as this would push the operational considerations to the tail end of the overall system design process and 
leave little room to address any deficiencies. This is especially prescient for advanced reactor vendors, 
since reduced staffing is a requirement to remain cost competitive during operations. Rancor provides an 
agnostic simplified model that can be coupled to control room design concepts to support evaluation. 
Through a collaboration with an advanced reactor vendor, Rancor was used to perform user preference 
and performance evaluations for some basic design concepts (see Figure 10), representing initial efforts to 
develop a control room concept. As mentioned in the previous section, Rancor is not well suited to test 
the robustness of the displays to support specific operations in comparison to a full-scope simulator. 
Testing the specific implementation of control schemes for specific systems is not useful in the absence of 
fully matured system design. However, Rancor can and has been used to develop the reactor vendor’s 
style guide comprised of the graphical elements, nomenclature, navigation, and layout of the displays for 
the control room design concept. To date one study has been performed and at the time of this writing. 
This first study illustrates how Rancor can be used to support advanced reactor control room design. 

In the study, the Rancor display graphics were stylistically altered to represent competing industrial 
process control design styles. Four different styles were implemented including the basic Rancor design, 
high performance human-machine interface, three-dimensional graphics, and neumorphic design 
(respectively represented clockwise in Figure 10). Static images were generated for each design with 
several different Rancor states. An online survey was developed to assess user preference and capture 
limited performance data with questions prompting participants to identify states or values within each 
display style. The collaborating vender provided engineering and operational personnel to complete the 
survey. Preferences, accuracy, and performance were captured and analyzed. The results identified a 
preference for the basic Rancor style. The three-dimensional style exhibited the greatest accuracy and 
shortest response times to identify states or values. These results were contrary to expectations that 
predicted the neumorphic style to be the most preferred and the three-dimensional to demonstrate the 
poorest performance. Rancor follows a simple industrial design aesthetic and therefore its preference is 
not surprising. Familiarity may also have driven performance, as participants working in this domain 
encounter three-dimensional graphics routinely despite their typically poor human factors. Familiarity 
may have augmented participants’ ability to interpret the display states and improve their accuracy and 
response times. Regardless of the study outcome, Rancor was an effective platform in identifying 
preference and performance across different styles. Furthermore, since Rancor is system design agnostic, 
the style evaluation alleviated vendor reported issues in which participants became distracted by the 
system engineering design as opposed to the style. The follow-up study moves beyond the static image 
survey and tasks participants with controlling Rancor across small scenarios. 

3.6.4 South Korean Rancor Validation Study 
The final major Rancor-based research activity aimed to gather human performance data to support 

HRA. HRA typically uses full-scope simulator data with operating crews (Massaiu, et al., 2010); 
however, this proves to be an expensive and time-consuming process. Furthermore, it is difficult to 
acquire sufficient data and effect sizes to properly quantify human error classification categories and 
rates. The suitability of Rancor as a platform to evaluate human performance was the central question for 
this study as it could potentially expand data collection capabilities if the results are representative for a 
traditional full-scope simulator study. To validate the use of Rancor for HRA data collection, it was 
necessary to compare metrics of human error in Rancor using an existing framework to determine if the 
metric assessments were representative to human error measured in a full-scope simulator.  

To perform the validation against existing full-scope simulator data, a collaboration between INL, 
Chosun University, and the University of Idaho was performed to test Rancor’s ability to evaluate human 
errors (Park et al., 2022b).  Twenty nuclear engineering students and twenty licensed reactor operators 
from South Korea completed ten scenarios requiring the detection, diagnosis, and response to plant faults. 
Rancor was updated to support actual component faults beyond the initial perturbation scenarios used in 
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the original validation experiment. Furthermore, procedures were drafted to support normal operations 
and emergency responses, such as a steam generator tube rupture response procedure.  

The results of the study demonstrated promise for Rancor to generalize, at least with respect to HRA. 
There were some notable differences. The ratio of errors of commission to errors of omission was larger 
in Rancor than what was observed in previous full-scope data collection studies. The participants 
committed more errors than they omitted correct actions respectively. Furthermore, the rate of errors 
overall was significantly higher in Rancor. Rancor appeared to overestimate the human error probability 
in comparison to a full scope simulator based on this result. Additional research is needed to further 
understand these differences, but the ability to capture these errors is a fruitful outcome. It is unreasonable 
to assume the error rates would match, but the amount of variability should be predictable. Future work is 
planned to further explore the use of Rancor to gather HRA data and examine how to extrapolate the 
results systematically to augment existing human error data sets. The data from this study, which were 
summarized in Part 1 of this report (Park et al., 2022b), provide empirical data to help understand, model, 
and validate a HUNTER implementation of the same scenarios. 

3.6.5 Rancor as an HRA Plant Simulator 
As the four use studies reflect, Rancor was developed to support existing research on control room 

concepts by offering a simplified nuclear process control environment to evaluate human performance 
constructs using naïve student participants. It has been used to evaluate human factors issues and HRA 
across several different research efforts. Because Rancor addresses the full range of simulator features 
while remaining a relatively simple model, Rancor is an ideal choice for a process simulator to tightly 
couple with HUNTER (see Section 2 of this report). The tight coupling allows the virtual operator in 
HUNTER to observe and interact with the Rancor nuclear power plant. Note that the version of Rancor 
coupled with HUNTER in this report contains only the simulation models and not the human-machine 
interface. This non-graphical version of Rancor runs faster than real time at a highly accelerated rate to 
support Monte Carlo simulations (see Figure 11). 

 

 
Figure 11. Early non-graphical console interface used for debugging the simulator model when running 

Rancor. 
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4. IMPLEMENTATION OF HUNTER-RANCOR 
4.1 HUNTER Software Architecture 

Before we discuss HUNTER coupling with Rancor, we first describe some details of HUNTER’s 
software architecture that are necessary for interfacing with Rancor. As previously described, HUNTER 
is a virtual operator framework for dynamic human reliability modeling. The version 1 framework was 
translated into a simulation application written in the Python programming language as HUNTER 2. The 
simulation code supports the ability to execute analyst-defined scenarios organized as tasks comprised of 
procedures. The procedures within the tasks are predefined as inputs to the application and contain all the 
necessary data elements to execute proceduralized tasks based on the simulated nuclear plant state. The 
state is used to evaluate the logic within each procedure step, and the virtual operator completion of each 
step is evaluated with a dynamic HRA module that uses the simulation context to calculate completion 
durations, HEPs, and success or failure.  

4.2 Proceduralized Operator Task Models 
A central aspect of this dynamic HRA software implementation is the proceduralization of activities 

to drive the virtual operator within the simulation. This model forms the roadmap that the scheduler 
references as it progresses through the simulation (Ulrich et al., 2022). When performing a task, operators 
execute a series of procedures or sections of procedures to arrive at the intended goal, i.e., plant state. 
Given its central importance to the simulation, the structure of procedures influences the software 
architecture. NPP operators use several different types of procedures, but from an HRA perspective, the 
most pertinent procedures are emergency operating procedures (EOPs) and abnormal operating 
procedures (AOPs).  

 
 

 
 

Figure 12. Example emergency operating procedure in the two-column format. 

 
For present purposes, we will focus on pressurized water reactors (PWRs). PWR AOPs and EOPs 

follow the two-column format (see Figure 12) in which the left Instruction column is the primary route 
towards a goal plant state and the right Response Not Obtained (RNO) column is used when criteria are 
not satisfied while completing a step in the left column. To complete a procedure, the operator executes 
each procedure step sequentially until all are completed, or the operator encounters a step with criteria 
that are unsatisfied and alternative activities are a required. Immediately after encountering failed criteria, 
the operator branches into the corresponding RNO column step, denoted with the same step number or 
substep identifier. The RNO step may entail performing other actions or require a transition to another 
step or another procedure entirely. The Rancor procedures are represented as a single column, but use the 
same logic in that a response obtained leads the operator to the next step and a response not obtained can 
branch to a different step. Thus, the logic of two-column and Rancor procedures are functionally 
equivalent. The procedure representation in the HUNTER software architecture can be seen in Figure 13. 
These elements include the following basic structures: 

EOP-E-0 REACTOR TRIP OR SAFETY INJECTION

INSTRUCTIONS RESPONSE NOT OBTAINED
Check CNMT Pressure - HAS
REMAINED LESS THAN 10 PSIG

Perform the following:
A) Verify CNMT spray - ACTUATED
b) Stop all RCPs

16. 16.
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Figure 13. Basic procedure step execution in HUNTER. 

 

1. Procedure—within the HUNTER architecture, the Procedure class contains a collection of 
ordered Steps, metadata regarding the procedure (authors, date, plant).  

2. Element—within the HUNTER architecture, Element is a base class for Step, Condition, and 
Action classes. 

3. Step—refers to a small set of activities that represent the base organization unit for a procedure (a 
procedure is an ordered collection of Steps. As noted, procedures are commonly organized in two 
columns of steps as exemplified by those used at PWRs. The primary tasking steps occur in the 
left column, denoted as instructions. If the criteria for the instructions are not met, then the 
operator moves to the right RNO column, which offers an alternative set of activities that may 
align with corresponding instruction column’s goal. Not all instruction column steps have a 
corresponding RNO step, depending on the nature of the procedure. By design, all procedures 
attempt to be closed such that any step’s success or failure branches to another step within the 
same procedure or transitions to a different procedure. 

4. Preconditions—refer to an ordered collection of Condition elements that must be affirmed to 
proceed to the next element of the step. Preconditions can include aggregated individual 
conditions following different types of logic including any or all being affirmed. Preconditions 
can trigger a prescribed action, or they constitute the entirety of the step itself to represent 
diagnostic steps within a procedure. 

5. Actions—refer to operator action taken to manipulate the state of a component or system. Actions 
may have preconditions that must be met prior to their execution, but a step could contain only an 
action. Postconditions are implicitly present in each step containing an action as the controller 
state change. They can also be explicitly included as defined plant parameters expected from the 
control state change. 

6. Postconditions—refer to an ordered collection of Condition elements that must be affirmed 
following an action taken within a step. The postconditions represent the plant response to an 
operator action. As such, postconditions must be affirmed before proceeding to the next serial 
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step. When postconditions are not affirmed, a response is not obtained and the step is 
unsuccessful.  

7. Substeps—refer to an ordered collection of Steps that are performed within a procedure step. 
Often a procedure step requires multiple substeps by operators to complete the desired tasking. 
Substeps function as a grouping mechanism to link a series of steps that accompany one another 
to complete a subtask. Steps and Substeps are enumerated. Substeps can be enumerated 
alphabetically (e.g. 1a, 1b, 1c) or numerically (e.g. 1.1, 1.2, 1.3). 

8. Condition—Preconditions and Postconditions contain statements that instructs the operator to 
determine a particular plant state. The Condition elements contain logic evaluates to a Boolean 
(i.e., True or False) based on one or more plant parameters.  

9. Transition—specifiesy the next element to evaluate based on whether or not the current element 
can successfully be completed.  

To support the dynamic human reliability aspects of the simulation, contextual information is linked 
to the Step, Condition, Action, and Transition elements. This is done because each step activity is 
assigned a GOMS-HRA primitive to provide a time duration associated with completion of the task and 
HEP for the task (Boring and Rasmussen, 2016; Ulrich et al., 2017a). The simulation is able to use the 
plant state to evaluate the context to calculate nominal time durations and HEPs. Additional details on the 
modules evaluating the context and plant state are provided in a subsequent section. Each procedural 
Step, Precondition, Action, Ppostcondition, and Substep includes the following information: 

1. Primitives—refer to the GOMS-HRA task level primitives (Boring and Rasmussen, 2016), which 
the HUNTER code uses to determine time durations and nominal HEPs for tasks. More than one 
task level primitive may be associated with a step.  

2. PSFs—refer to performance shaping factors that are dynamically or statically calculated during 
the simulation and applied to the primitive. The nominal HEP and time duration sampled during 
the simulation are multiplied by the combined PSFs to adjust the simulated time duration and the 
HEP value at each time point in the simulation.  

4.3 Implementational Modules 
This section describes the modules as they are used to run each of the Monte Carlo simulations. Note 

that these modules describe pieces of software code used to execute HUNTER. The functional modules 
described earlier include the individual, task, and environment modules. The implementational modules 
include software code that supports the overall execution of the functional modules. In many cases these 
are transparent to the user of HUNTER and are therefore backend code required to make HUNTER run. 

4.3.1 Plant Model  
Before describing the implementational modules, the plant model itself (a.k.a., the environment 

module) is worth describing. The plant model is not in itself a module, but it is a crucial aspect of the 
overall simulation and enables many of the dynamic capabilities provided by HUNTER. A plant model is 
run in tandem to track the plant state as the virtual operator manipulates components based on the 
procedure as well as the natural progression of the simulation without intervention, which is typically 
initiated with a fault and progresses towards a system failure state without operator intervention. 
Therefore, the virtual operator’s success or failure is largely governed by the amount of time remaining to 
mitigate a given fault based on the amount of time required to complete the mitigating activities. The 
scheduler travels along the procedure path while polling the plant state through an API module to 
determine whether key parameters have exceeded threshold values indicating a system failure and the end 
of that simulation run. In its current version, the API module supports communication with RELAP5-3D 
and Rancor simulations. 
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4.3.2 Scheduler Module 
The Scheduler module includes several classes that collectively perform Monte Carlo based 

simulations of the task defined through the comma-separated value (CSV) input files. The scheduler acts 
as the executive for what is being done by which module and when. Practically, it serves as the 
placekeeper for the other modules. The scheduler stores analyst-defined configurations for the overall 
simulation in a configuration class that is accessible throughout the simulation to serve as a central data 
repository for the application. The Scheduler module has access to all the other modules and contains 
several subclasses itself, most notably the log class that outputs data to CSV log files. 

The log class serves as the historian and performs input/output functions to record each simulation 
run in CSV output files. The log class also contains some debugging capabilities to assist analysts in 
testing the CSV input files and logging errors in procedure path execution, such as an unclosed procedure 
path with no possibility to advance. As the scheduler is executing simulation runs, it is monitoring the 
runs to cease any failed runs and move to the next run attempt. 

4.3.3 Task Module 
Within each simulation run, the Scheduler calls the Task module to execute the procedure steps. The 

Task module contains the classes that store and manipulate the activity executed during each simulation 
run. The Task module contains the procedures with their steps. The module can execute unlinked 
procedures in sequence, but in practice the task typically begins on a specific procedure at a specific step, 
and then the steps themselves contain all the information to guide the simulation since each step contains 
the appropriate transition to other procedures in the task. Specifically, each step contains a transition 
object that contains an identifier for the next step based on the results of its own successful or failed 
execution. These transitions can be: 

 
1. The next instruction column step within the procedure sequence, or 
2. The adjacent RNO column step or substep, or a step in another procedure. 
 
Each step is executed, and the result of the execution contains the appropriate next step item. The 

steps within the procedures of the task are completed until no more instruction steps remain or an end 
simulation flag is encountered. While executing each step, the HRA module calculates the elapsed time 
and an HEP for each step. 

4.3.4 HRA Module 
The Task module relies on the HRA module to evaluate the plant context and performs two key 

functions. First, it calculates an elapsed time for each step or substep activity and increments the 
simulated time for the main simulation and the plant simulation. This is important to progress the plant 
state in step with the time durations required to perform each step activity. Second, the HRA module 
calculates an instantaneous HEP, which is used to alter the course of the procedure path or incur a time 
debt. The HEP aspects of the module are still quite limited, but the simulator can fail a step based on a 
calculated HEP exceeding an analyst defined threshold. Based on the analyst defined configuration, the 
step is repeated, and a time debt is incurred, which over several failed steps can lead key parameters 
within the plant simulation to exceed their thresholds such that the simulation run ends in a system failed 
state. The other approach that is supported currently is to treat the HEP threshold exceedance as a 
procedure logic failure and follow the failed procedure step transition to the next appropriate step. In this 
configuration, the failure leads the virtual operator down the wrong path. The critical element that binds 
the Task and HRA modules together is the Step module, which contains the parameters used by the HRA 
module. 
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4.3.5 Step Module 
The Step module is responsible for executing each step, which entails evaluating the plant state 

against the logic defined within the step and evaluating the HRA context. The Step module contains a step 
class, which serves as the data structure to store parameter objects defining each step. One key parameter 
object is the logic which contains the plant model component parameter and the logic test used to evaluate 
the state of the component. The step class also contains several HRA parameter objects. GOMS-HRA 
task-level primitives are defined in the primitive subclass parameter object. Each step can contain 
multiple primitives to represent more complicated activities, but in practice there should never be more 
than two based on initial simulator validations. Ideally a single primitive should be assigned to each step 
or substep, but due to the variability within procedure steps, more complicated steps that do not contain 
any substeps may require two or more primitives to capture the intended tasks. Primitives are defined 
with the GOMS-HRA coding scheme, such as CC to denote the “check in the control room” task-level 
primitive. Each task-level primitive type has a predefined execution time distribution and HEP associated 
with it. The various contexts surrounding the virtual operator are defined in the PSF class. Relevant PSFs 
from the SPAR-H method can be assigned with default levels corresponding to specific multiplier values 
that are applied on top of the base HEP linked to the GOMS-HRA primitive. 

Shown earlier, Figure 13 depicts the different data elements and their relationships in terms of how 
the Step module evaluates each procedure step. The evaluation of the step serves both as a datapoint 
recorded in the log of the simulation run and dictates the next procedure step selection for the simulation. 
Figure 14 below depicts how the Step module evaluates each step by using the API to the plant model and 
HRA module to gather plant state data to evaluate the step logic and evaluate the HRA context. 

 
 

 
Figure 14. Step execution example using the instruction step, left column, from the sample procedure in 

Figure 12. 

 

16. (INSTRUCTIONS)

Result

16. (RNO)
Logic Failed

Step Elapsed Time = 44.3

Logic
object: CNMT Pressure

criteria: < 10 PSIG

GOMS-HRA
Check (Cc)

Time = 24.5 sd=6.8

HEP = 0.01 

Stress = 10

Available Time = 0.5
X =

Nominal HEP = 0.8

Calculated Time = 44.3 s

Plant Model

11.2 PSIG

Time Elapsed
Time required

Time Available

CurrentT
System FailureT

Projected Value

Failure Value
Transition

16. (INSTRUCTIONS)

Result

16. (RNO)
Logic Failed

Step Elapsed Time = 44.3

Logic
object: CNMT Pressure

criteria: < 10 PSIG

GOMS-HRA
Check (Cc)

Time = 24.5 sd=6.8

HEP = 0.01 

Stress = 10

Available Time = 0.5
X =

Nominal HEP = 0.8

Calculated Time = 44.3 s

Plant Model

11.2 PSIG

Time Elapsed
Time required

Time Available

CurrentT
System FailureT

Projected Value

Failure Value
Transition



 

 30 

All of these elements do need to be defined within each step. In fact, HUNTER can be run without the 
plant model to perform time uncertainty quantification estimates that purely look at the variability in the 
execution of particular tasks. In this manner, the simulation model must define the plant state outcome for 
each step, since there is no way to evaluate the logic in the absence of a plant model running in tandem. 
The intent of the dummy mode is to support examining the human reliability variables along a prescribed 
path to examine known scenarios or validate a model against an empirically observed scenario data set. 

4.4 Procedure Schemas 
Our previous efforts described a procedure schema for two-column procedures commonly found in 

nuclear power plant AOPs and EOPs for use in the HUNTER framework. Here we have extended the 
schema such that it is possible to represent the logic of procedures with single-column instructions and 
maintain existing two-column format logic support. The new schema also still allows for defining 
substeps within steps, but has added some additional elements to support new step subelements. In its 
base form, procedures are a collection of steps that are generally followed in a consecutive order. The 
simplified schema is as follows in Table 2 with the additional precondition, Actions, and Postcondition 
elements.  

 

Table 2. Simplified procedure schema. 

Procedure 

 Steps = List[Step] 

 

Step 

Preconditions = List[Condition] 

Actions = List[Action] 

Postconditions = List[Condition] 

Substeps = List[Step] 

 

The schema is intended to provide flexibility for defining procedures. However, best practices for 
writing procedures should likely only include a subset of what the schema allows for. For instance, 
procedure guidance could dictate that a step should either contain substeps or preconditions, actions, and 
postconditions; but not both. Procedure guidance could also dictate that substeps should not contain 
substeps. Conditions, Actions, and Steps can also define transitions that specify procedure flow when the 
response is obtained or when the response is not obtained. Though there are basic elements and structures 
common across the industry, there is still some variability in how procedures are implemented. Therefore, 
the use of these different elements may vary depending on the plant being modeled. 

4.4.1 Advanced Procedure Authoring Features 
The procedure authoring feature in HUNTER has incorporated advanced features to assist in the 

authoring of plant procedures to eliminate repetitive and tedious task declarations. 

4.4.1.1 Proxy Definitions for Steps, Conditions, and Actions 
Procedures often contain repeated steps, conditional checks, or actions. Proxy definitions allow a 

procedure author to define macros for Steps, Conditions, and Actions that can be referenced by their 
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identifier (ID) and reused in procedures. This increases the consistency of procedures and increases the 
efficiency of procedure writing.  

4.4.1.2 Conditions and Aggregate Conditions 
The procedure schema supports two types of conditions. The plain Condition type evaluates whether 

a single statement regarding plant variable is true. The author specifies a component ID and a logical 
evaluation statement such as “x >= 3.”  The value of the component ID is replaced with x before 
evaluating the statement. To enforce code security, the evaluation statement can only contain x, <, >, <=, 
>=, ==, numbers, and Booleans as tokens. 

Procedures often have verbiage with multi-item r logic such as: “If any of the following conditions 
are met, then perform the following….” The Aggregate Condition type allows for multiple conditional 
logic statements to be evaluated. The analyst can specify whether any of the conditions satisfy the 
Aggregate Condition (i.e., “OR” logic) or whether all the conditions must be met to satisfy the Aggregate 
Condition (i.e., “AND” logic).  

4.4.1.3 Procedural Control Statements 
The transitions can be defined as procedure and step IDs (e.g., AOP-0001, Step-1) or as Procedure 

Control Statements similar to established procedural programming languages. HUNTER has implemented 
the following control statements (see Figure 15): 

1. Pass 
• Do not evaluate transition. Transition based on parent element 

2. Next 
• Go to the next sibling element 

3. Continue 
• Stop evaluating this element and move to the next sibling element 

4. Break 
• Stop evaluating this element and skip remaining sibling elements 

5. Exit 
• Exit the procedure 

6. Recurse 
• Repeat current substep or step. 

 

The control statements allow procedure authoring without needing to specify procedure step numbers 
explicitly. The alternative to procedures is to specify a procedure ID and element ID. The use of control 
statements serves to make the procedures more generic and easier to modify. For example, steps can 
easily be inserted or reordered without having to worry about renumbering all the subsequent transitions 
in a procedure. 
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Figure 15. Screenshot of the dialog for selecting a procedural control statement transition.  

 

4.5 Configuration Schemas 
HUNTER simulates human activities and human performance within those activities. All simulation 

models must contain model definitions for the three functional modules: individual, task, and 
environment (see Figure 2). HUNTER uses JSON files for configuring model parameters (see Table 3). 
The environment includes the plant simulator and faults defined in a scenario configuration. The 
individual’s reliability is defined by parameters in the HRA-Engine configuration. Lastly, the task is 
specified by a task configuration file, which includes a list of procedures to execute. 

 

Table 3. HUNTER configuration schemas 

Scheduler 

 HRA-Engine 

Task 

 Procedures 

 Scenario 

  Simulator Units 

   Initial Conditions 

   Faults 

 

The JSON files are used to deserialize HUNTER model instances. The configuration could be 
specified as a single object with a single schema. However, to support code use and organization we have 
divided the configuration across five nested schemas: Scheduler, HRA-Engine, Task, Procedures, and 
Scenario. The configuration schemas are arranged hierarchically as shown in Table 3 and described next.  
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4.5.1 Scheduler 
The scheduler configuration contains the high-level simulation parameters (see Figure 16). This 

includes the number of iterations that should be performed, the maximum number of elements that should 
be evaluated for each iteration, the starting time on shift for the virtual operators (as a static time or a 
dynamic function), the ID for the HRA-Engine configuration, and ID for the task to be performed, and the 
working directory to save model outputs. The scenario depicted specifies that 490 Monte Carlo iterations 
of the task should be performed. The virtual operator should use HRA parameters specified by the 
dynamic_fatigue_random_t0 model, and the task that should be performed is the loss_of_feedwater task. 
The starting time on shift specifies that each iteration task should start after the virtual operator has been 
on shift for 0 to 12 hours (i.e., 0 to 43,2000 seconds). This latter configuration is useful for consideration 
of fatigue, which is one of the dynamic PSFs modeled in HUNTER (Park et al., 2022a). Note that other 
configuration parameters can be included for other PSF modeling. Fatigue parameters are included for 
illustrative purposes only and should not be considered the main drivers on performance. 

 

 

Figure 16. Scheduler configuration for a loss of feed water scenario.  

 

4.5.2 HRA-Engine 
The HRA-Engine configuration defines the parameters for the operator’s human reliability model, as 

shown in Figure 17. The static_tmult parameter specifies a baseline fatigue value that is used to calculate 
the time to complete the GOMS-HRA primitives, the assumption being that performance time is 
influenced by fatigue. The time_on_shift_fatigue parameter specifies whether the dynamic fatigue model 
should be used. The static_tmult is set to 0 and time on shift fatigue modeling is on so the HRA modeling 
will use the fatigue function previously discussed. The static_tmult is a bias parameter for this function, 
which could be used to calibrate the timing or emulate operators with varying experience. 
 

 

Figure 17. Example HRA-Engine configuration. 
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4.5.3 Task 
The task configuration specifies a list of procedures needed for the task, as shown in Figure 18. By 

default, the operator starts the first procedure in the list. The configuration also specifies a Simulator 
Scenario ID, which links the simulator configuration to the task. The operators should enter the eop-
0002_loss_of_feedwater scenario. The aop-0001_rapid_shutdown is performed if feedwater cannot be 
restored. The task should run the loss_of_feedwater scenario in the simulator or plant model. 

 

 

Figure 18. Task configuration for the loss of feedwater scenario. 

 
 

 

Figure 19. Example simulator scenario configuration file for a loss of feedwater scenario using the Rancor 
Python model. 
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4.5.4 Simulator Scenario 
The simulator scenario configuration specifies the plant and the faults (see Figure 19) as interfaced to 

Rancor in the environment module. The plant can contain 1 or more units, and each unit has an initial 
condition specified as well as optional faults. The faults can be triggered by a time step, a simulation time, 
or an event trigger. Each fault contains a list of malfunctions. The malfunctions specify a value to set in 
the plant or method to execute.  

4.6 HUNTERweb Tool 
A low-code (no programming required) web-based configuration analyst interface has been 

developed using Python/Flask. The low-code approach allows analysts to build HUNTER models without 
needing extensive programming skills. Flask is a lightweight web development framework that connects 
with the Python programming language. The HUNTERweb tool can be conceptualized as a database 
creation and authoring tool. Generally, JSON schemas are defined by a developer and added to 
HUNTERweb. HUNTERweb is a powerful authoring and model-building tool that complements the 
original GUI tools developed in HUNTER 2 (Ahn et al., 2022). 

HUNTERweb uses a JSON Schema Code Editor library (https://github.com/json-editor/json-editor) 
to provide a web-form based tool for authoring configuration files (see Figure 20). 

  

 

Figure 20. Screenshot of HUNTERweb editor with example startup scenario. 



 

 36 

Flask/JavaScript functionality fills in additional features for providing a catalog listing of 
configuration files, viewing files, and saving and deleting files. The database functionality is implemented 
in a manner that is agnostic to the underlying schemas (see Figure 21 and Figure 22). The databases are 
directory based, allowing HUNTERweb to be web-deployed. In such a scenario, users could have logins 
to maintain separate databases from other users or ensure data protection. The databases may also be 
locally stored on a local computer drive or a corporate network shared drive. 

 

 

 
Figure 21. HUNTERweb database management is schema agnostic. 
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Figure 22. Screenshot of the HUNTERweb tool displaying a catalog of procedures. 

 

4.7 Rancor Python Model 
The University of Idaho and INL jointly developed Rancor. The primary implementation of Rancor is 

in Microsoft’s Windows Presentation Foundation (WPF), which runs as a standalone application in the 
Microsoft Windows operating system. The Rancor model was developed as a human factors research tool 
for nuclear power operations with naïve participants. The plant model from this version was ported to 
Python. This implementation significantly reduces the complexity of integrating HUNTER with a 
simulator-in-the-loop by allowing the simulator to be a class instance within the HUNTER framework. 
Alternatively, the simulator would need to be run independently, and communication would need to occur 
through an API or a remote procedure call framework.  

The fully Python approach eliminates these complexities and allows debugging through both 
HUNTER and Rancor source code during runtime to troubleshoot code. After verifying that the 
HUNTER code meets quality expectations it will be easier to integrate HUNTER-in-the-loop with non-
Python models such as the GPWR simulator. 

Another key advantage integrating a reduced order model like Rancor is the ability to run faster than 
real-time. Python Rancor can, for example, run 140x real time on a ten-year-old Windows based machine. 
This allows hundreds or even thousands of task runs to be modeled in a couple of hours. In contrast, full-
scope simulators are typically locked at real-time or limited to 2x or 4x real-time. Because the authors 
developed Rancor and HUNTER, we have full knowledge of the code-base and were able to simplify the 
integration to keep Rancor in lock-step with the virtual operator in HUNTER. 

Python Rancor also has a newly developed interactive user interface implemented with Textual 0.2.0 
(https://www.textualize.io/blog/posts/textual-0-point-2-point-0) to allow analysts and operators to run and 
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interact with the model (see Figure 23). This is a purpose-built monitoring interface for HUNTER that 
builds on the non-graphical version of Rancor shown earlier in Figure 11. 

 

 

Figure 23. Textual user interface for Rancor Python model running in display terminal mode. 
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5. HUNTER-RANCOR SIMULATOR RUNS 
5.1 Introduction 

Each scheduler specifies an output directory for HUNTER outputs. The HUNTER Monte Carlo 
simulation outputs four hierarchically organized CSV files for primitive level, element level, procedure 
level, and task level data. As seen in Figure 24, the top panel contains task level statistics. The second 
panel contains procedure level statistics. The third panel contains element level statistics. And lastly the 
bottom panel contains task level primitive statistics. 

 
Figure 24. HUNTER outputs from a startup scenario Monte Carlo simulation. 

 

Each time the scheduler is run, a 4-hexidecimal digit universally unique identifier (UUID) is 
generated. Then, for each iteration, a unique 8-hexidecimal digit identifier is appended to the scheduler 
parent. Then for procedure the procedure ID is appended. And for each step/element an enumerated ID is 
appended. Lastly, for each primitive the primitive ID is appended. So, for example the UUID 
“97e5_01d12312_op-0001_step-1|precondition-1_Rc” came from the 97e5 scheduler, from task 
01d12312, on the op-0001 procedure when they were performing step-1|precondition-1 and evaluating 
the Rc primitive.  

For each event the HUNTER logs record the simulator step. This corresponds to Rancor outputs that 
can be cross-referenced during analyses to determine the state of the plant. For each iteration Rancor 
produces a timeseries CSV file and an event JSON file. The names of these files follow the format: 
<scheduler_id>_<task_id>. 

Two of the ten scenarios from Park et al. (2022a) were selected as development and demonstration 
scenarios. The two selected scenarios are:  

1. Loss of feedwater, and  

2. Startup from cold-shutdown to 100% power.  
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The loss of feedwater scenario is an emergency scenario with low complexity requiring operators to 
rapidly shutdown the plant by following a series of actions in a prescribed order. The startup procedure is 
a normal operating procedure with higher complexity due to the need to coordinate the operation of plant 
subsystems. 

The requisite procedures were re-written using the HUNTERweb tool, and GOMS-HRA primitives 
were assigned. The GOMS-HRA primitives used for these scenarios had the parameters listed as follows 
in Table 4. 

 

Table 4. GOMS-HRA talk level primitives for scenarios in HUNTER. 

Primitive Distribution Location Scale Nominal HEP 

RC - Retrieval Control Room lognormal 2.11 0.6 0.001 

AC - Action Control Room lognormal 2.23 1.18 0.001 

DP - Decision based on Procedures exponential 0.02 N/A 0.001 

 

5.2 Scenario 1: Loss of Feedwater 
5.2.1 Description 

The loss of feedwater scenario is a simple fault condition where both of the feedwater pumps 
spuriously trip, causing abnormally low feedwater flow. The loss of feedwater occurs with the plant 
online and at 100% power. The operators are tasked with following an EOP to try and restore feedwater. 
The plant fault does not allow for feedwater to be restored, and the operators must enter and complete a 
rapid shutdown procedure. 

5.2.2 Implementation 
The virtual operator follows EOP-0002 Loss of Feedwater and AOP-0001 Rapid Shutdown to verify 

that feedwater flow has been lost and attempts to restore feedwater flow by manual turning both pumps 
back on. When the feedwater flow cannot be restored, the virtual operator rapidly shuts down the plant by 
placing the turbine on bypass and manually tripping the turbine and reactor. HUNTER was configured to 
run 500 iterations of the startup scenario with starting time-on-shift between 0 and 12 hours. The time-on-
shift affects the dynamic fatigue calculation. The loss of feedwater procedure was authored using the 
HUNTERweb procedure authoring interface, and Appendix A contains a rendered version of the 
procedure. 

5.2.3 Results 
The virtual operator was able to complete the Loss of Feedwater Procedure and Rapid Shutdown 

Procedure in all 500 simulated evolutions, as shown in Figure 25. 
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Figure 25. Distribution of times for HUNTER to complete loss of feedwater. 

 

5.2.4 Discussion 
The virtual operator was able to complete the loss of feedwater scenario, and the timing and 

successful task completion is consistent with human operators (see Table 5) as reported the Part 1 report 
(Park et al., 2022a). The virtual operator had an average completion time of 302 seconds. The Chosun 
University dataset had 10 students and 4 operators complete the Loss of Feedwater Scenario. The students 
took 195 seconds on average to complete the scenario, and the operators took an average of 154 seconds 
to complete the scenario. Here we can observe the virtual operator is slower than the human operators. In 
Section 6 of this report we will discuss this difference in more detail. While this scenario is simple, it 
demonstrates that the HUNTER-Rancor integration is functional.  

 

Table 5.  Comparison of HUNTER and Chosun timing results for the loss of feedwater scenario. 

Study Count Average Standard 
Deviation 

Chosun Human Students 10 3:15 0:30 

Chosun Human Operators 4 2:34 0:55 

HUNTER Virtual Operators 500 5:02 1:34 

 

5.3 Scenario 2: Startup 
5.3.1 Description 

The startup procedure is a normal operating procedure to transition Rancor from a cold shutdown 
state to producing electricity with the reactor at 100% power. The scenario is fairly complex as it involves 
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coordinating plant subsystems. The startup procedure for Rancor follows the same basic steps as a real 
PWR. The reactor is started by first establishing primary coolant flow and raising the control rods. The 
reactor is brought up to a low power level of around 10% in order to ramp the turbine. When the reactor is 
stable and at operating temperature the turbine can be latched and the governor valve can be raised to 
bring the turbine to its synchronization speed of 1800 RPM. Once the turbine is at synchronization speed 
the generator can be synced to the grid. At this point the plant is producing about 10% of its power 
capacity. The final phase of the plant evolution is to simultaneously raise reactor power and grid load 
while controlling reactor temperature and power to make sure it doesn’t fall out of band and trigger a 
reactor trip. Real PWRs have more sophisticated control systems that maintain primary side temperatures 
and pressures, but coordination is still required between the primary and secondary sides during load 
changes. The scenario is considered successful if the plant is online and stable with the reactor at 100% 
power.  

5.3.2 Implementation 
Rancor had a startup procedure that was adapted for use for HUNTER. The procedures for HUNTER 

need to be much more explicit than traditional procedures so that the virtual operator can complete the 
steps without having to have internal knowledge of the plant and operational controls. The startup 
procedure was also adapted to the procedure schema described in Section 4.2. The startup procedure was 
authored using the HUNTERweb procedure authoring interface, and Appendix B contains a rendered 
version of the procedure. The procedures for HUNTER were serialized as JSON and deserialized as 
Python class instances. 

A notable shortcoming of the current HUNTER implementation is that the virtual operator cannot 
follow continuous actions. Continuous actions are a procedure mechanism that allows operators to 
asynchronously follow multiple procedure steps throughout a plant evolution. During the startup 
procedure for Rancor, human operators are tasked with making sure the reactor temperature does not get 
too high or too low while also completing the steps to bring the plant online. 

HUNTER was configured to run 500 iterations of the startup scenario with starting time-on-shift 
between 0 and 12 hours. The time-on-shift affects the dynamic fatigue calculation.  

 
Figure 26. Distribution of times for HUNTER to complete startup. 
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5.3.3 Results 
The virtual operator was able to complete the startup procedure on 404 of 500 iterations. The average 

completion time was 733 seconds (12 minutes 13 seconds). The distribution of startup times is shown in 
Figure 26. 

Across the 500 iterations, the HUNTER virtual operator performed 8078 action attempts and had an 
error of commission rate of 0.001238 (i.e., failed 10 actions). The virtual operator checked 23,824 
indicators with an error rate of 0.000839 (i.e., failed 20 checks). 

5.3.4 Discussion 
The virtual operator was able to successfully latch the turbine in 494 of 500 iterations and sync the 

turbine/generator in 498 of 500 iterations. However, the virtual operators were only able to bring the plant 
to 100% power in 404 of 500 iterations. During the ramping phase, actual operators manually monitor 
plant parameters and increase reactor power and load. The startup procedure for the virtual operator 
model implemented a strategy to accomplish ramping the plant but did so less successfully than real 
human operators due to slower response time for retrieving and taking actions. During this phase of the 
evolution the human reactor operators did not need to reference the procedures and took faster actions. 
The HUNTER model could be improved by adding additional GOMS-HRA primitives for modeling 
manual control that does not rely on formally referencing written procedures for each control decision and 
action. 

 

Table 6. Comparison of HUNTER and Chosun timing results for the startup scenario. 

Study Count Average Standard 
Deviation 

Human Students 19 9:40 3:08 

Human Operators 9 12:06 6:47 

HUNTER Virtual Operators 500 12:13 3:48 

 

Nineteen Chosun University student participants performed the Rancor startup procedure and had 
comparatively more consistent and faster performance with an average time of 9 minutes and 40 seconds 
compared to the 12 minutes observed with the virtual operators (see Table 6). Nine operators completed 
the startup procedure and completed the scenario in 12 minutes and 6 seconds. The timing of the 
HUNTER model is consistent with the operators from the Chosun University study. 

 The Chosun University study found a task error rate of 0.009 and student operators and an error rate 
of 0.006 for licensed operators. The HEPs of the virtual operator were lower by an order of magnitude 
from the observed dataset. Future work is needed to improve the HEP modeling of HUNTER so HEPs are 
more representative of human operators. 
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6. CONCLUSIONS 
In this report, we demonstrated HUNTER can be synchronously coupled to Rancor to perform 

dynamic HRA Monte Carlo simulations.  We modeled two scenarios and demonstrated that the virtual 
operator can complete task evolutions. This represents a significant and successful demonstration for 
coupling a virtual operator with a virtual plant model to support dynamic HRA. This approach shows 
promise, but it also demonstrates the need for further refinement in the modeling to better calibrate virtual 
operator to actual operator performance. 

6.1 Lessons Learned from HUNTER-Rancor Coupling 
The HUNTER-Rancor coupling demonstrated that HUNTER could be synchronously coupled to a 

process-based simulator. Rancor was an ideal model for this exercise because it was available as a Python 
model, meaning it could be used without an API and the two software codes could be combined as a 
single environment. The successful coupling brings HUNTER closer to its goal of being a standalone, 
single-click-to-launch software, independent of external codes for the environment module. The authors 
wrote the code for both HUNTER and Rancor, and therefore have extensive experience with both code 
bases. During development, we could freely alter the models as needed to assist with the HUNTER-
Rancor integration. The ability to debug from HUNTER to Rancor source code greatly eased 
development of the complicated node-based procedure following logic. Because Rancor mimics the 
functionality of full-scope simulators, we are confident this coupling could be done with more 
complicated full-scope simulators. For the purposes of proof-of-concept demonstrations, HUNTER-
Rancor provides an ideal, non-proprietary code base for developing and testing scenarios. 

6.2 Lessons Learned from Demonstration Scenarios 
 The observed data show that students are faster than operators with the normal evolutions (i.e., the 
startup scenario), but with the abnormal evolution (i.e., the loss of feedwater scenario) the operators are 
faster than the students. This suggests that the operators have the ability to work slowly and cautiously or 
more expediently and quickly depending on plant circumstances. Our HUNTER timing closely matched 
the timing of the slow and cautious operators with the startup procedure, but was much slower completing 
the loss of feedwater scenario with rapid shutdown. This suggests that the HUNTER model cannot 
accurately model the expediency felt by the operators yet. For each element we need the ability to assign 
PSFs that could also alter the sampled time from the primitives to account for this discrepancy. 

Human operators perform procedure guided control actions, but also engage in faster freestyle manual 
control actions. Our virtual operator was very capable of syncing the turbine to the grid, but struggled to 
ramp the reactor and generator to full power. This portion of the evolution requires visually monitoring of 
critical parameters to avoid tripping the reactor and/or turbine, and the virtual operator was not able to 
respond fast enough with the existing GOMS-HRA primitives implemented in a procedural fashion. 
HUNTER needs GOMS-HRA primitives for both types of human control mode. GOMS-HRA primitives 
are too slow to model faster freestyle manual control actions. Even when GOMS-HRA was developed, it 
was acknowledged that refinements to the primitives would likely be necessary (Boring and Rasmussen, 
2016). The startup scenario provides illustrative evidence to suggest one such revision. 

As noted, HUNTER does not currently support continuous action procedure steps. In human 
operators, continuous actions are not performed as part of periodic surveys of the plant or in a continuous 
monitoring fashion, depending on the type of action. Time-slicing activities will likely require a virtual 
buffer of actions that will be affected by the overall workload of the operator. Continuous actions may 
take a second priority to immediately required actions, for example, and HUNTER will need a way to 
reflect the availability of the operator to shift and prioritize between actions. Another form of continuous 
action is alarm monitoring. Given the anecdotally reported complexities of operators filtering multiple 
alarms to determine which alarms to prioritize, more empirical work will be required before we are able 
to develop a HUNTER multitasking model that supports alarm response. 
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6.3 Next Steps 
We have found that the virtual operator is currently less error prone than observed humans for 

information retrieval and carrying out actions. Work is needed to implement a broader range of dynamic 
PSFs. Currently HEPs are influenced by fatigue from being on shift and from the GOMS-HRA time 
distributions defined for each task level primitive. With the current implementation, the HEP increases 
linearly as a function of fatigue(time_on_shift), and the primitive’s time distribution (see Figure 27).  

 

 
Figure 27. HUNTER code stub from HRA-Engine to model a GOMS-HRA primitive. 

 
With this model longer times always yield higher HEPs. So, if the virtual operator is rushing it will 

always have probabilistically lower HEPs. A potential solution is to use the cumulative distribution 
function (CDF) of the primitives’ time distribution to set HEP multipliers. For instance, extreme quantiles 
could have higher multipliers, and middle quantiles could have nominal multipliers. 

The HUNTERweb tool has proven to be helpful during the development process to author and edit 
schemas. Future work should deploy this tool and make it available to non-developer users for testing and 
running of HUNTER. The HUNTERweb tool currently stands apart from the harmonized GUI of 
HUNTER 2, and it is planned to integrate HUNTERweb into the overall interface during the next 
development cycle. 

While HUNTER is intended as an HRA tool, some of its main utility may be outside conventional 
risk analysis. HUNTER could, for example, be invaluable for optimizing procedures and validating their 
functionality. A challenge in the nuclear industry with control room modernization and with advanced 
reactor concepts of operation is the lack of operational experience. Yet, procedures must be written for 
novel human-machine interactions. With even simple simulator models it is possible to validate that the 
procedure accomplishes what it is intended to and to identify human error traps. The Monte Carlo 
approach adds resilience, as it is able to tease out edge conditions that would require fairly extensive 
operator testing and that procedure writers might not anticipate of during authoring. A planned 
application of HUNTER in the next fiscal year is procedure performance prediction. 
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APPENDIX A – RANCOR LOSS OF FEEDWATER PROCEDURES 
FOR HUNTER 

The procedure was authored using the HUNTERweb procedure authoring interface and is rendered here 
to demonstrate the procedure flow and logic. Note that the procedure represents a sanitized and 
significantly simplified version of a loss of feedwater procedure and is not tied to an actual plant. The 
procedure is based on the Rancor Microworld Simulator simplified operating procedure. 

eop-0002_loss_of_feedwater 
Authors 

Roger Lew 
Plant 

Rancor (JabbaPy) 
Updated 

2022-10-05 
Procedure Type 

OP 

Purpose 

This procedure provides actions to diagnose and mitigate a loss of feedwater. 

Step 1. Verify Entry Conditions 

Verify the following preconditions: 

– Check the Following 

ANY of the following conditions are met: 

– FW Pump A Off ( Rc )  

FeedWaterPumpA, x == False 

– FW Pump A Off ( Rc )  

FeedWaterPumpB, x == False 

– FW A Flow Low ( Rc )  

FwALowFlow, x == True 

– FW Pump B Off ( Rc )  
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FwBLowFlow, x == True 

If response was NOT obtained exit this procedure.  

Step 2. Verify Feedwater Pumps are Running 

Perform the following Actions: 

SubStep 2.1. Verify FeedWater Pump A is Running 

Verify the following preconditions: 

– Check if FeedWater Pump A is already running ( Rc , Dp )  

FeedWaterPumpA, x == True 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Turn on FeedWater Pump A ( Rc )  

FeedWaterPumpA <= False 

Verify the following postconditions: 

– Verify Feedwater Pump A is Running ( Rc )  

FeedWaterPumpA, x == True 

SubStep 2.2. Verify FeedWater Pump B is Running 

Verify the following preconditions: 

– Check if FeedWater Pump B is already running ( Rc , Dp )  

FeedWaterPumpB, x == True 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Turn on FeedWater Pump B ( Rc )  

FeedWaterPumpB <= False 
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Verify the following postconditions: 

– Verify Feedwater Pump B is Running ( Rc )  

FeedWaterPumpA, x == True 

SubStep 2.3. Check if Feedwater Flow is normal 

Verify the following preconditions: 

– Check the Following 

ANY of the following conditions are met: 

– FW Pump A Off ( Rc )  

FeedWaterPumpA, x == False 

– FW Pump A Off ( Rc )  

FeedWaterPumpB, x == False 

– FW A Flow Low ( Rc )  

FwALowFlow, x == True 

– FW Pump B Off ( Rc )  

FwBLowFlow, x == True 

If response was NOT obtained exit this procedure.  

Step 3. Verify Feedwater IVs are Open 

Perform the following Actions: 

SubStep 3.1. Verify FeedWater IV A is Open 

Verify the following preconditions: 

– Check if FeedWater IV A is already Open ( Rc , Dp )  

FWIVA, x == 1 

If response was obtained go to parent's next (sub)step.  
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Perform the following Actions: 

– Turn on FeedWater IV A ( Rc )  

FWIVA <= 1 

Verify the following postconditions: 

– Verify Feedwater IV A is Open ( Rc )  

FWIVA, x == 1 

SubStep 3.2. Verify FeedWater IV B is Open 

Verify the following preconditions: 

– Check if FeedWater IV B is already Open ( Rc , Dp )  

FWIVB, x == 1 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Turn on FeedWater IV B ( Rc )  

FWIVB <= 1 

Verify the following postconditions: 

– Verify Feedwater IV B is Open ( Rc )  

FWIVA, x == 1 

SubStep 3.3. Check if FeedWater Flow is Normall 

Verify the following preconditions: 

– Check the Following 

ANY of the following conditions are met: 

– FW Pump A Off ( Rc )  

FeedWaterPumpA, x == False 
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– FW Pump A Off ( Rc )  

FeedWaterPumpB, x == False 

– FW A Flow Low ( Rc )  

FwALowFlow, x == True 

– FW Pump B Off ( Rc )  

FwBLowFlow, x == True 

If response was NOT obtained exit this procedure.  

Step 4. Rapid Shutdown 

Perform the following Actions: 

SubStep 4.1. Verify FeedWater IV A is Open 

Verify the following preconditions: 

– Check if FeedWater IV A is already Open ( Rc , Dp )  

FWIVA, x == 1 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Turn on FeedWater IV A ( Rc )  

FWIVA <= 1 

Verify the following postconditions: 

– Verify Feedwater IV A is Open ( Rc )  

FWIVA, x == 1 

SubStep 4.2. Verify FeedWater IV B is Open 

Verify the following preconditions: 

– Check if FeedWater IV B is already Open ( Rc , Dp )  
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FWIVB, x == 1 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Turn on FeedWater IV B ( Rc )  

FWIVB <= 1 

Verify the following postconditions: 

– Verify Feedwater IV B is Open ( Rc )  

FWIVA, x == 1 

If response was obtained Go to aop-0001_rapid_shutdown — step-1  

If response was NOT obtained Go to aop-0001_rapid_shutdown — step-1  

aop-0001_rapid_shutdown 
Authors 

Roger Lew 
Plant 

JabbaPy 
Updated 

2022-10-31 
Procedure Type 

OP 

Purpose 

This procedure shuts down the plant in an expedient manner 

Step 1. Verify that one of the steam generator (SG) levels is normal 

Verify the following preconditions: 

–  

ANY of the following conditions are met: 

– SGLevelA is normal ( Rc )  

SGLevelA, 0.4 <= x <= 0.6 
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– SGLevelB is normal ( Rc )  

SGLevelB, 0.4 <= x <= 0.6 

Step 2.  

Perform the following Actions: 

– Adjust the Bypass Valve to 10% ( Ac )  

BypassValveDemand <= 0.1 

Step 3. Manually Trip Turbine 

Verify the following preconditions: 

– Turbine not tripped ( Rc )  

TurbineTrip, x != True 

If response was NOT obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Trip Turbine ( Ac )  

ScramTurbine() 

Step 4. Manually Trip Reactor 

Verify the following preconditions: 

– Reactor not tripped ( Rc )  

AllRodsDown, x != True 

If response was NOT obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Trip Reactor ( Ac )  

ScramReactor() 

Step 5. Manually Activate Safety Injection 
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Perform the following Actions: 

– ( Ac )  

ManualSafetyInjectionActive <= True 

Step 6.  

Perform the following Actions: 

– Close PORV 1 IV ( Ac )  

PorvDump1Stuck <= 0 

– Close PORV 2 IV ( Ac )  

PorvDump2Stuck <= 0 

– Close PORV 3 IV ( Ac )  

PorvDump3Stuck <= 0 

– Close PORV 4 IV ( Ac )  

PorvDump4Stuck <= 0 

Step 7.  

Perform the following Actions: 

SubStep 7.1. Open Bypass Valve 

Perform the following Actions: 

– ( Ac )  

BypassValveDemand <= 1 

SubStep 7.2. Wait for Core Temp to Stabilize 

Verify the following postconditions: 

– ( Rc )  

RXvesselTemperature, x > 250 
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If response was obtained go back to the start of this (sub)step.  

SubStep 7.3. Close Bypass Valve 

Perform the following Actions: 

–  

BypassValveDemand <= 0 

If response was obtained exit this procedure.  

If response was NOT obtained exit this procedure.  
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APPENDIX B – RANCOR STARTUP PROCEDURE FOR HUNTER 

The procedure was authored using the HUNTERweb procedure authoring interface and is rendered here 
to demonstrate the procedure flow and logic. Note that the procedure represents a sanitized and 
significantly simplified version of a plant startup procedure and is not tied to an actual plant. The 
procedure is based on the Rancor Microworld Simulator simplified operating procedure. 

op-0001_startup 
Authors 
Plant 

Rancor Jabba 
Updated 

2022-10-03 
Procedure Type 

OP 

Purpose 

This procedure describes how to start up and operate the Rancor Nuclear Power Plant in Auto 
mode. It assumes the Reactor is in shut down state, and the turbine is offline. 

Step 1. Verify the Reactor is Shutdown 

Verify the following preconditions: 

– Verify the ALL RODS DOWN annuciator is lit ( Rc )  

AllRodsDown, x == True 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Trip the Reactor ( Ac )  

ScramReactor() 

Verify the following postconditions: 

– Verify the ALL RODS DOWN annuciator is lit ( Rc )  

AllRodsDown, x == True 

Step 2. Verify the Turbine is Shutdown 
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Verify the following preconditions: 

– Verify the TURBINE TRIP Annunciator Light is ON ( Rc )  

TurbineTrip, x == True 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Trip the Turbine ( Ac )  

ScramTurbine() 

Verify the following postconditions: 

– Verify the TURBINE TRIP Annunciator Light is ON ( Rc )  

TurbineTrip, x == True 

Step 3. Start Reactor Coolant Pumps 

Perform the following Actions: 

SubStep 3.1. Start Reactor Coolant Pump A 

Verify the following preconditions: 

– Check if Reactor Coolant Pump A is already running ( Rc )  

RecircPumpA, x == True 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Start Reactor Coolant Pump A ( Ac )  

RecircPumpA <= True 

Verify the following postconditions: 

– Verify Reactor Coolant Pump A is running ( Rc )  

RecircPumpA, x == True 
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SubStep 3.2. Start Reactor Coolant Pump B 

Verify the following preconditions: 

– Check if Reactor Coolant Pump B is already running ( Rc )  

RecircPumpB, x == True 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Start Reactor Coolant Pump A ( Ac )  

RecircPumpB <= True 

Verify the following postconditions: 

– Verify Reactor Coolant Pump A is running ( Rc )  

RecircPumpA, x == True 

SubStep 3.3. Verify primary coolant flow level 

Verify the following postconditions: 

– The LOW PRIMARY COOLANT Annunciator Light is off ( Rc )  

LowPrimaryCoolantFlow, x == False 

Step 4. Bring the Reactor Online 

Perform the following Actions: 

SubStep 4.1. Set Rod Control to Auto Mode 

Verify the following preconditions: 

– Check if Rod Control is in AUTO ( Rc )  

RodCtrlAutoMode, x == True 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 
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– Set Rod Control To Auto ( Rc )  

SetRodCtrlAuto() 

SubStep 4.2. Set Rod Control Target 

Perform the following Actions: 

– Set RX Target To 8% ( Ac )  

RodCtrlTargetRX <= 8 

SubStep 4.3. Place Rod Control in Go 

Perform the following Actions: 

– Press the Rod Control Go Button ( Ac )  

SetRodCtrlGo() 

Step 5. Start Feedwater Pumps 

Perform the following Actions: 

SubStep 5.1. Start Feedwater Pump A 

Verify the following preconditions: 

– Check if Feedwater Pump A is already running ( Rc )  

FeedWaterPumpA, x == True 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Start Feedwater Pump A ( Ac )  

FeedWaterPumpA <= True 

Verify the following postconditions: 

– Verify Feedwater Pump A is running ( Rc )  

FeedWaterPumpA, x == True 
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SubStep 5.2. Start Feedwater Pump B 

Verify the following preconditions: 

– Check if Feedwater Pump B is already running ( Rc )  

FeedWaterPumpB, x == True 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Start Feedwater Pump A ( Ac )  

FeedWaterPumpB <= True 

Verify the following postconditions: 

– Verify Feedwater Pump A is running ( Rc )  

FeedWaterPumpA, x == True 

Step 6. Open Feedwater Isolation Valves 

Perform the following Actions: 

SubStep 6.1. Open FW IV A 

Verify the following preconditions: 

– Check if FWIV A is already Open ( Rc )  

FWIVA, x == 1 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Open FWIV A ( Ac )  

FWIVA <= True 

Verify the following postconditions: 

– Verify FWIVA is Open ( Rc )  
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FWIVA , x == 1 

SubStep 6.2. Open FW IV B 

Verify the following preconditions: 

– Check if FWIVB is already Open ( Rc )  

FWIVB, x == 1 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Open FWIVB ( Ac )  

FWIVB <= True 

Verify the following postconditions: 

– Verify FWIVB is Open ( Rc )  

FWIVB, x == 1 

Step 7. Open Main Steam Isolation Valves 

Perform the following Actions: 

SubStep 7.1. Open MS IV A 

Verify the following preconditions: 

– Check if MSIV A is already Open ( Rc )  

MSIVA, x == 1 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Open MSIV A ( Ac )  

MSIVA <= True 

Verify the following postconditions: 
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– Verify MSIVA is Open ( Rc )  

MSIVA , x == 1 

SubStep 7.2. Open MS IV B 

Verify the following preconditions: 

– Check if MSIVB is already Open ( Rc )  

MSIVB, x == 1 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Open MSIVB ( Ac )  

MSIVB <= True 

Verify the following postconditions: 

– Verify MSIVB is Open ( Rc )  

MSIVB, x == 1 

Step 8. Place SG Level Controllers in Auto 

Perform the following Actions: 

SubStep 8.1. Place SG Level Controller A in Auto 

Verify the following preconditions: 

– Check if SG Level Controller A is already in Auto ( Rc )  

SGACtrlAuto, x == True 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Place SG Level Controller A in Auto ( Ac )  

SetSGACtrlAuto() 
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SubStep 8.2. Place SG Level Controller A in Auto 

Verify the following preconditions: 

– Check if SG Level Controller B is already in Auto ( Rc )  

SGBCtrlAuto, x == True 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Place SG Level Controller B in Auto ( Ac )  

SetSGBCtrlAuto() 

Step 9. Latch Turbine 

Verify the following preconditions: 

– Check if Reactor Scramed ( Rc )  

AllRodsDown, x == True 

If response was obtained exit this procedure.  

– Verify The Turbine is Ready to Latch 

ALL of the following conditions are met: 

– Verify Core Temperature is greater than 400 DEG F ( Rc )  

CoreLowTemp, x == False 

– Verify the Turbine is not Latched ( Rc )  

Latched, x == False 

– Reactor is not Scramed ( Rc )  

AllRodsDown, x == False 

If response was NOT obtained Go to op-0001_startup — step-9  

Perform the following Actions: 
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– Latch the Turbine ( Ac )  

LatchTurbine() 

Verify the following postconditions: 

– Verify the NOT LATCHED Annuciator is Off ( Rc )  

NotLatched, x == False 

Step 10. Ramp-up Turbine to 1800 RPM 

Perform the following Actions: 

– Set Governor Valve Position Demand to 100% ( Ac )  

GovernorValveDemand <= 1 

Verify the following postconditions: 

– Verify Turbine Speed is Increasing ( Rc )  

dTurbineSpeed, x > 0 

Step 11. Sync Generator to Grid 

Verify the following preconditions: 

– Ready to Sync Conditions are met 

ALL of the following conditions are met: 

– Turbine is at 1800 RPM ( Rc )  

TurbineSpeed, 1799 < x < 1804 

– Reactor is Online ( Rc )  

AllRodsDown, x == False 

– Primary Flow is Normal ( Rc )  

LowPrimaryCoolantFlow, x == False 

If response was NOT obtained go back to the start of this (sub)step.  
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Perform the following Actions: 

– Sync Turbine  

SyncTurbine() 

Step 12. Increase Load 

Perform the following Actions: 

SubStep 12.1. Make sure Core Temperature is below 650 F 

Verify the following preconditions: 

– Is Core Temperature less than 650 F? ( Rc )  

RXvesselTemperature, x < 650 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Increase Load by 5% ( Ac )  

IncreaseLoad() 

Verify the following postconditions: 

– Wait for Core Temperature to Decrease 

ANY of the following conditions are met: 

– Check Core Temp < 650F (1) ( Rc )  

RXvesselTemperature, x < 650 

If response was obtained Go to op-0001_startup — substep-12.2  

– Check Core Temp < 650F (2) ( Rc )  

RXvesselTemperature, x < 650 

If response was obtained go to parent's next (sub)step.  

– Check Core Temp < 650F (3) ( Rc )  
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RXvesselTemperature, x < 650 

If response was obtained go to parent's next (sub)step.  

– Check Core Temp < 650F (4) ( Rc )  

RXvesselTemperature, x < 650 

If response was obtained go to parent's next (sub)step.  

If response was NOT obtained go back to the start of this (sub)step.  

SubStep 12.2. Make sure Core Temperature is greater than 600 F 

Verify the following preconditions: 

– Is Core Temperature less than 600 F? ( Rc )  

RXvesselTemperature, x < 600 

If response was obtained go to parent's next (sub)step.  

Perform the following Actions: 

– Increase RX Target by 5% ( Ac )  

IncreaseTargetRX() 

Verify the following postconditions: 

– Wait for Core Temperature to Decrease 

ANY of the following conditions are met: 

– Check Core Temp > 600F (1) ( Rc )  

RXvesselTemperature, x > 600 

If response was obtained Go to op-0001_startup — step-13  

– Check Core Temp > 600F (2) ( Rc )  

RXvesselTemperature, x > 600 

If response was obtained Go to op-0001_startup — step-13  

– Check Core Temp > 600F (3) ( Rc )  
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RXvesselTemperature, x > 600 

If response was obtained Go to op-0001_startup — step-13  

– Check Core Temp > 600F (4) ( Rc )  

RXvesselTemperature, x > 600 

If response was obtained Go to op-0001_startup — step-13  

If response was NOT obtained Go to op-0001_startup — substep-12.2  

Step 13. Increase Reactivity and Load 

Perform the following Actions: 

SubStep 13.1. Increase Load 

Perform the following Actions: 

– Set Target Load to 90%  

ControlValveDemand <= .90 

SubStep 13.2. Increase Target RX 

Perform the following Actions: 

– Increase RX Target to 100%  

RodCtrlTargetRX <= 100 

Step 14. Monitor Until Stable 

Verify the following preconditions: 

– Check if Reactor Scramed ( Rc )  

AllRodsDown, x == True 

If response was obtained exit this procedure.  

– Check if not Online ( Rc )  

ControlValve, x == 0 

If response was obtained exit this procedure.  
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Verify the following postconditions: 

– RX at 100% and Load at 90% 

ALL of the following conditions are met: 

– RX is at ~100% ( Rc )  

RX, x > 99.5 

– Load at 90% ( Rc )  

ControlValve, 0.89 < x < 0.91 

If response was obtained exit this procedure.  

If response was NOT obtained Go to op-0001_startup — step-14  

 

 


